1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
use bulletproofs::r1cs::{ConstraintSystem, LinearCombination, Variable};
use curve25519_dalek::scalar::Scalar;

pub const MIMC_ROUNDS: usize = 90;

pub fn proof_gadget<CS: ConstraintSystem>(
    cs: &mut CS,
    d: LinearCombination,
    k: LinearCombination,
    y_inv: LinearCombination,
    q: LinearCombination,
    z_img: LinearCombination,
    seed: LinearCombination,
    constants: &Vec<Scalar>,
    toggle: Vec<Variable>, // private: binary list indicating private number is somewhere in list
    items: Vec<LinearCombination>, // public list
) {
    assert_eq!(MIMC_ROUNDS, constants.len());
    // Prove z
    let m = mimc_gadget(cs, k, Scalar::zero().into(), &constants);

    let x = mimc_gadget(cs, d.clone(), m.clone(), &constants);

    one_of_many_gadget(cs, x.clone(), toggle, items);

    let y = mimc_gadget(cs, seed.clone(), x, &constants);

    let z = mimc_gadget(cs, seed, m, &constants);

    cs.constrain(z_img - z);

    // Prove Q
    score_gadget(cs, d, y, y_inv, q);
}

// N.B. the constrain on the image has been removed, as we will not know the intermediate images
fn mimc_gadget<CS: ConstraintSystem>(
    cs: &mut CS,
    left: LinearCombination,
    right: LinearCombination,
    constants: &Vec<Scalar>,
) -> LinearCombination {
    assert_eq!(MIMC_ROUNDS, constants.len());

    let mut x = left.clone();
    let key = right.clone();

    for i in 0..MIMC_ROUNDS {
        // x + k + c[i]
        let a = x + key.clone() + constants[i];

        // (a)^2
        let (_, _, a_2) = cs.multiply(a.clone(), a.clone());

        // (a)^3
        let (_, _, a_3) = cs.multiply(a_2.clone().into(), a.clone().into());

        // (a)^4
        let (_, _, a_4) = cs.multiply(a_2.clone().into(), a_2.clone().into());

        // (a)^7
        let (_, _, a_7) = cs.multiply(a_4.into(), a_3.into());

        x = a_7.into();
    }

    x + key
}

fn score_gadget<CS: ConstraintSystem>(
    cs: &mut CS,
    d: LinearCombination,
    y: LinearCombination,
    y_inv: LinearCombination,
    q: LinearCombination,
) {
    let one = Scalar::one();

    // check that Yinv * Y = 1
    let (_, _, one_var) = cs.multiply(y, y_inv.clone());
    cs.constrain(one_var - one);

    // Q = F(d,Y)
    let (_, _, q_var) = cs.multiply(d, y_inv);
    cs.constrain(q - q_var);
}

fn one_of_many_gadget<CS: ConstraintSystem>(
    cs: &mut CS,
    x: LinearCombination,          // private: our item x
    toggle: Vec<Variable>,         // private: binary list indicating it is somewhere in list
    items: Vec<LinearCombination>, // public list
) {
    let toggle_len = toggle.len();

    // ensure every item in toggle is binary
    for i in toggle.iter() {
        boolean_gadget(cs, i.clone().into());
    }

    // toggle_sum[i] = toggle_sum(i-1) + toggle(i)
    let mut toggle_sum: Vec<LinearCombination> = Vec::with_capacity(toggle_len);
    toggle_sum.push(toggle[0].clone().into());
    for i in 1..toggle_len {
        let prev_toggle_sum = toggle_sum[i - 1].clone();
        let curr_toggle = toggle[i].clone();

        toggle_sum.push(prev_toggle_sum + (curr_toggle.clone()));
    }

    // ensure sum of toggles = 1
    for i in 1..toggle_len {
        let prev_toggle_sum = toggle_sum[i - 1].clone();
        let curr_toggle = toggle[i].clone();
        let curr_toggle_sum = toggle_sum[i].clone();

        toggle_sum[i] = toggle_sum[i - 1].clone() + (toggle[i].clone());

        cs.constrain(prev_toggle_sum + (curr_toggle) - (curr_toggle_sum));
    }
    let one: Scalar = Scalar::one();
    let last_item = toggle_sum[toggle_len - 1].clone();
    cs.constrain(last_item - one);

    // now check if item is in list
    // item[i] * toggle[i] = toggle[i] * our item (x)
    for i in 0..toggle_len {
        let (_, _, left) = cs.multiply(items[i].clone(), toggle[i].clone().into());
        let (_, _, right) = cs.multiply(toggle[i].clone().into(), x.clone());
        cs.constrain(left - right);
    }
}

fn boolean_gadget<CS: ConstraintSystem>(cs: &mut CS, a1: LinearCombination) {
    // a *(1-a) = 0
    let a = a1.clone();
    let one: LinearCombination = Scalar::one().into();
    let (_, _, c_var) = cs.multiply(a, one - a1);
    cs.constrain(c_var.into());
}