Files
aho_corasick
ansi_term
atty
backtrace
backtrace_sys
bitflags
blindbid
block_buffer
block_padding
bulletproofs
byte_tools
byteorder
cfg_if
chrono
clap
clear_on_drop
curve25519_dalek
digest
dusk_blindbidproof
dusk_tlv
dusk_uds
env_logger
failure
failure_derive
fake_simd
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
humantime
keccak
lazy_static
libc
log
memchr
merlin
num_cpus
num_integer
num_traits
opaque_debug
packed_simd
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quick_error
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
rustc_demangle
serde
serde_derive
sha2
sha3
slab
strsim
subtle
syn
synstructure
termcolor
textwrap
thread_local
time
typenum
unicode_width
unicode_xid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The dirichlet distribution.

use Rng;
use distributions::Distribution;
use distributions::gamma::Gamma;

/// The dirichelet distribution `Dirichlet(alpha)`.
///
/// The Dirichlet distribution is a family of continuous multivariate
/// probability distributions parameterized by a vector alpha of positive reals.
/// It is a multivariate generalization of the beta distribution.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand::distributions::Dirichlet;
///
/// let dirichlet = Dirichlet::new(vec![1.0, 2.0, 3.0]);
/// let samples = dirichlet.sample(&mut rand::thread_rng());
/// println!("{:?} is from a Dirichlet([1.0, 2.0, 3.0]) distribution", samples);
/// ```

#[derive(Clone, Debug)]
pub struct Dirichlet {
    /// Concentration parameters (alpha)
    alpha: Vec<f64>,
}

impl Dirichlet {
    /// Construct a new `Dirichlet` with the given alpha parameter `alpha`.
    ///
    /// # Panics
    /// - if `alpha.len() < 2`
    ///
    #[inline]
    pub fn new<V: Into<Vec<f64>>>(alpha: V) -> Dirichlet {
        let a = alpha.into();
        assert!(a.len() > 1);
        for i in 0..a.len() {
            assert!(a[i] > 0.0);
        }

        Dirichlet { alpha: a }
    }

    /// Construct a new `Dirichlet` with the given shape parameter `alpha` and `size`.
    ///
    /// # Panics
    /// - if `alpha <= 0.0`
    /// - if `size < 2`
    ///
    #[inline]
    pub fn new_with_param(alpha: f64, size: usize) -> Dirichlet {
        assert!(alpha > 0.0);
        assert!(size > 1);
        Dirichlet {
            alpha: vec![alpha; size],
        }
    }
}

impl Distribution<Vec<f64>> for Dirichlet {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec<f64> {
        let n = self.alpha.len();
        let mut samples = vec![0.0f64; n];
        let mut sum = 0.0f64;

        for i in 0..n {
            let g = Gamma::new(self.alpha[i], 1.0);
            samples[i] = g.sample(rng);
            sum += samples[i];
        }
        let invacc = 1.0 / sum;
        for i in 0..n {
            samples[i] *= invacc;
        }
        samples
    }
}

#[cfg(test)]
mod test {
    use super::Dirichlet;
    use distributions::Distribution;

    #[test]
    fn test_dirichlet() {
        let d = Dirichlet::new(vec![1.0, 2.0, 3.0]);
        let mut rng = ::test::rng(221);
        let samples = d.sample(&mut rng);
        let _: Vec<f64> = samples
            .into_iter()
            .map(|x| {
                assert!(x > 0.0);
                x
            })
            .collect();
    }

    #[test]
    fn test_dirichlet_with_param() {
        let alpha = 0.5f64;
        let size = 2;
        let d = Dirichlet::new_with_param(alpha, size);
        let mut rng = ::test::rng(221);
        let samples = d.sample(&mut rng);
        let _: Vec<f64> = samples
            .into_iter()
            .map(|x| {
                assert!(x > 0.0);
                x
            })
            .collect();
    }

    #[test]
    #[should_panic]
    fn test_dirichlet_invalid_length() {
        Dirichlet::new_with_param(0.5f64, 1);
    }

    #[test]
    #[should_panic]
    fn test_dirichlet_invalid_alpha() {
        Dirichlet::new_with_param(0.0f64, 2);
    }
}