Files
aho_corasick
ansi_term
atty
backtrace
backtrace_sys
bitflags
blindbid
block_buffer
block_padding
bulletproofs
byte_tools
byteorder
cfg_if
chrono
clap
clear_on_drop
curve25519_dalek
digest
dusk_blindbidproof
dusk_tlv
dusk_uds
env_logger
failure
failure_derive
fake_simd
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
humantime
keccak
lazy_static
libc
log
memchr
merlin
num_cpus
num_integer
num_traits
opaque_debug
packed_simd
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quick_error
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
rustc_demangle
serde
serde_derive
sha2
sha3
slab
strsim
subtle
syn
synstructure
termcolor
textwrap
thread_local
time
typenum
unicode_width
unicode_xid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Poisson distribution.

use Rng;
use distributions::{Distribution, Cauchy};
use distributions::utils::log_gamma;

/// The Poisson distribution `Poisson(lambda)`.
///
/// This distribution has a density function:
/// `f(k) = lambda^k * exp(-lambda) / k!` for `k >= 0`.
///
/// # Example
///
/// ```
/// use rand::distributions::{Poisson, Distribution};
///
/// let poi = Poisson::new(2.0);
/// let v = poi.sample(&mut rand::thread_rng());
/// println!("{} is from a Poisson(2) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Poisson {
    lambda: f64,
    // precalculated values
    exp_lambda: f64,
    log_lambda: f64,
    sqrt_2lambda: f64,
    magic_val: f64,
}

impl Poisson {
    /// Construct a new `Poisson` with the given shape parameter
    /// `lambda`. Panics if `lambda <= 0`.
    pub fn new(lambda: f64) -> Poisson {
        assert!(lambda > 0.0, "Poisson::new called with lambda <= 0");
        let log_lambda = lambda.ln();
        Poisson {
            lambda,
            exp_lambda: (-lambda).exp(),
            log_lambda,
            sqrt_2lambda: (2.0 * lambda).sqrt(),
            magic_val: lambda * log_lambda - log_gamma(1.0 + lambda),
        }
    }
}

impl Distribution<u64> for Poisson {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
        // using the algorithm from Numerical Recipes in C

        // for low expected values use the Knuth method
        if self.lambda < 12.0 {
            let mut result = 0;
            let mut p = 1.0;
            while p > self.exp_lambda {
                p *= rng.gen::<f64>();
                result += 1;
            }
            result - 1
        }
        // high expected values - rejection method
        else {
            let mut int_result: u64;

            // we use the Cauchy distribution as the comparison distribution
            // f(x) ~ 1/(1+x^2)
            let cauchy = Cauchy::new(0.0, 1.0);

            loop {
                let mut result;
                let mut comp_dev;

                loop {
                    // draw from the Cauchy distribution
                    comp_dev = rng.sample(cauchy);
                    // shift the peak of the comparison ditribution
                    result = self.sqrt_2lambda * comp_dev + self.lambda;
                    // repeat the drawing until we are in the range of possible values
                    if result >= 0.0 {
                        break;
                    }
                }
                // now the result is a random variable greater than 0 with Cauchy distribution
                // the result should be an integer value
                result = result.floor();
                int_result = result as u64;

                // this is the ratio of the Poisson distribution to the comparison distribution
                // the magic value scales the distribution function to a range of approximately 0-1
                // since it is not exact, we multiply the ratio by 0.9 to avoid ratios greater than 1
                // this doesn't change the resulting distribution, only increases the rate of failed drawings
                let check = 0.9 * (1.0 + comp_dev * comp_dev)
                    * (result * self.log_lambda - log_gamma(1.0 + result) - self.magic_val).exp();

                // check with uniform random value - if below the threshold, we are within the target distribution
                if rng.gen::<f64>() <= check {
                    break;
                }
            }
            int_result
        }
    }
}

#[cfg(test)]
mod test {
    use distributions::Distribution;
    use super::Poisson;

    #[test]
    fn test_poisson_10() {
        let poisson = Poisson::new(10.0);
        let mut rng = ::test::rng(123);
        let mut sum = 0;
        for _ in 0..1000 {
            sum += poisson.sample(&mut rng);
        }
        let avg = (sum as f64) / 1000.0;
        println!("Poisson average: {}", avg);
        assert!((avg - 10.0).abs() < 0.5); // not 100% certain, but probable enough
    }

    #[test]
    fn test_poisson_15() {
        // Take the 'high expected values' path
        let poisson = Poisson::new(15.0);
        let mut rng = ::test::rng(123);
        let mut sum = 0;
        for _ in 0..1000 {
            sum += poisson.sample(&mut rng);
        }
        let avg = (sum as f64) / 1000.0;
        println!("Poisson average: {}", avg);
        assert!((avg - 15.0).abs() < 0.5); // not 100% certain, but probable enough
    }

    #[test]
    #[should_panic]
    fn test_poisson_invalid_lambda_zero() {
        Poisson::new(0.0);
    }

    #[test]
    #[should_panic]
    fn test_poisson_invalid_lambda_neg() {
        Poisson::new(-10.0);
    }
}