1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2018 Isis Lovecruft, Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

// We allow non snake_case names because coordinates in projective space are
// traditionally denoted by the capitalisation of their respective
// counterparts in affine space.  Yeah, you heard me, rustc, I'm gonna have my
// affine and projective cakes and eat both of them too.
#![allow(non_snake_case)]

//! An implementation of [Ristretto][ristretto_main], which provides a
//! prime-order group.
//!
//! # The Ristretto Group
//!
//! Ristretto is a modification of Mike Hamburg's Decaf scheme to work
//! with cofactor-\\(8\\) curves, such as Curve25519.
//!
//! The introduction of the Decaf paper, [_Decaf:
//! Eliminating cofactors through point
//! compression_](https://eprint.iacr.org/2015/673.pdf), notes that while
//! most cryptographic systems require a group of prime order, most
//! concrete implementations using elliptic curve groups fall short –
//! they either provide a group of prime order, but with incomplete or
//! variable-time addition formulae (for instance, most Weierstrass
//! models), or else they provide a fast and safe implementation of a
//! group whose order is not quite a prime \\(q\\), but \\(hq\\) for a
//! small cofactor \\(h\\) (for instance, Edwards curves, which have
//! cofactor at least \\(4\\)).
//!
//! This abstraction mismatch is commonly “handled” by pushing the
//! complexity upwards, adding ad-hoc protocol modifications.  But
//! these modifications require careful analysis and are a recurring
//! source of [vulnerabilities][cryptonote] and [design
//! complications][ed25519_hkd].
//!
//! Instead, Decaf (and Ristretto) use a quotient group to implement a
//! prime-order group using a non-prime-order curve.  This provides
//! the correct abstraction for cryptographic systems, while retaining
//! the speed and safety benefits of an Edwards curve.
//!
//! Decaf is named “after the procedure which divides the effect of
//! coffee by \\(4\\)”.  However, Curve25519 has a cofactor of
//! \\(8\\).  To eliminate its cofactor, Ristretto restricts further;
//! this [additional restriction][ristretto_coffee] gives the
//! _Ristretto_ encoding.
//!
//! More details on why Ristretto is necessary can be found in the
//! [Why Ristretto?][why_ristretto] section of the Ristretto website.
//!
//! Ristretto
//! points are provided in `curve25519-dalek` by the `RistrettoPoint`
//! struct.
//!
//! ## Encoding and Decoding
//!
//! Encoding is done by converting to and from a `CompressedRistretto`
//! struct, which is a typed wrapper around `[u8; 32]`.
//!
//! The encoding is not batchable, but it is possible to
//! double-and-encode in a batch using
//! `RistrettoPoint::double_and_compress_batch`.
//!
//! ## Equality Testing
//!
//! Testing equality of points on an Edwards curve in projective
//! coordinates requires an expensive inversion.  By contrast, equality
//! checking in the Ristretto group can be done in projective
//! coordinates without requiring an inversion, so it is much faster.
//!
//! The `RistrettoPoint` struct implements the
//! `subtle::ConstantTimeEq` trait for constant-time equality
//! checking, and the Rust `Eq` trait for variable-time equality
//! checking.
//!
//! ## Scalars
//!
//! Scalars are represented by the `Scalar` struct.  Each scalar has a
//! canonical representative mod the group order.  To attempt to load
//! a supposedly-canonical scalar, use
//! `Scalar::from_canonical_bytes()`. To check whether a
//! representative is canonical, use `Scalar::is_canonical()`.
//!
//! ## Scalar Multiplication
//!
//! Scalar multiplication on Ristretto points is provided by:
//!
//! * the `*` operator between a `Scalar` and a `RistrettoPoint`, which
//! performs constant-time variable-base scalar multiplication;
//!
//! * the `*` operator between a `Scalar` and a
//! `RistrettoBasepointTable`, which performs constant-time fixed-base
//! scalar multiplication;
//!
//! * an implementation of the
//! [`MultiscalarMul`](../traits/trait.MultiscalarMul.html) trait for
//! constant-time variable-base multiscalar multiplication;
//!
//! * an implementation of the
//! [`VartimeMultiscalarMul`](../traits/trait.VartimeMultiscalarMul.html)
//! trait for variable-time variable-base multiscalar multiplication;
//!
//! ## Random Points and Hashing to Ristretto
//!
//! The Ristretto group comes equipped with an Elligator map.  This is
//! used to implement
//!
//! * `RistrettoPoint::random()`, which generates random points from an
//! RNG;
//!
//! * `RistrettoPoint::from_hash()` and
//! `RistrettoPoint::hash_from_bytes()`, which perform hashing to the
//! group.
//!
//! The Elligator map itself is not currently exposed.
//!
//! ## Implementation
//!
//! The Decaf suggestion is to use a quotient group, such as \\(\mathcal
//! E / \mathcal E[4]\\) or \\(2 \mathcal E / \mathcal E[2] \\), to
//! implement a prime-order group using a non-prime-order curve.
//!
//! This requires only changing
//!
//! 1. the function for equality checking (so that two representatives
//!    of the same coset are considered equal);
//! 2. the function for encoding (so that two representatives of the
//!    same coset are encoded as identical bitstrings);
//! 3. the function for decoding (so that only the canonical encoding of
//!    a coset is accepted).
//!
//! Internally, each coset is represented by a curve point; two points
//! \\( P, Q \\) may represent the same coset in the same way that two
//! points with different \\(X,Y,Z\\) coordinates may represent the
//! same point.  The group operations are carried out with no overhead
//! using Edwards formulas.
//!
//! Notes on the details of the encoding can be found in the
//! [Details][ristretto_notes] section of the Ristretto website.
//!
//! [cryptonote]:
//! https://moderncrypto.org/mail-archive/curves/2017/000898.html
//! [ed25519_hkd]:
//! https://moderncrypto.org/mail-archive/curves/2017/000858.html
//! [ristretto_coffee]:
//! https://en.wikipedia.org/wiki/Ristretto
//! [ristretto_notes]:
//! https://ristretto.group/details/index.html
//! [why_ristretto]:
//! https://ristretto.group/why_ristretto.html
//! [ristretto_main]:
//! https://ristretto.group/

use core::borrow::Borrow;
use core::convert::TryFrom;
use core::fmt::Debug;
use core::iter::Sum;
use core::ops::{Add, Neg, Sub};
use core::ops::{AddAssign, SubAssign};
use core::ops::{Mul, MulAssign};

use rand_core::{CryptoRng, RngCore};

use digest::generic_array::typenum::U64;
use digest::Digest;

use constants;
use field::FieldElement;

use subtle::Choice;
use subtle::ConditionallySelectable;
use subtle::ConditionallyNegatable;
use subtle::ConstantTimeEq;

use edwards::EdwardsBasepointTable;
use edwards::EdwardsPoint;

use errors::{CurveError, InternalError};

#[allow(unused_imports)]
use prelude::*;

use scalar::Scalar;

use traits::Identity;
#[cfg(any(feature = "alloc", feature = "std"))]
use traits::{MultiscalarMul, VartimeMultiscalarMul, VartimePrecomputedMultiscalarMul};

#[cfg(not(all(
    feature = "simd_backend",
    any(target_feature = "avx2", target_feature = "avx512ifma")
)))]
use backend::serial::scalar_mul;
#[cfg(all(
    feature = "simd_backend",
    any(target_feature = "avx2", target_feature = "avx512ifma")
))]
use backend::vector::scalar_mul;

// ------------------------------------------------------------------------
// Compressed points
// ------------------------------------------------------------------------

/// A Ristretto point, in compressed wire format.
///
/// The Ristretto encoding is canonical, so two points are equal if and
/// only if their encodings are equal.
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct CompressedRistretto(pub [u8; 32]);

impl ConstantTimeEq for CompressedRistretto {
    fn ct_eq(&self, other: &CompressedRistretto) -> Choice {
        self.as_bytes().ct_eq(other.as_bytes())
    }
}

impl TryFrom<&[u8]> for CompressedRistretto {
    type Error = CurveError;

    fn try_from(bytes: &[u8]) -> Result<CompressedRistretto, CurveError> {
        if bytes.len() != 32 {
            return Err(CurveError(
                InternalError::BytesLengthError{name: "CompressedRistretto", length: 32}));
        }

        Ok(CompressedRistretto::from_slice(bytes))
    }
}

impl From<[u8; 32]> for CompressedRistretto {
    fn from(bytes: [u8; 32]) -> Self {
        CompressedRistretto(bytes)
    }
}

impl CompressedRistretto {
    /// Copy the bytes of this `CompressedRistretto`.
    pub fn to_bytes(&self) -> [u8; 32] {
        self.0
    }

    /// View this `CompressedRistretto` as an array of bytes.
    pub fn as_bytes(&self) -> &[u8; 32] {
        &self.0
    }

    /// Construct a `CompressedRistretto` from a slice of bytes.
    ///
    /// # Panics
    ///
    /// If the input `bytes` slice does not have a length of 32.  For a
    /// panic-safe version of this API, see the implementation of
    /// `TryFrom<&[u8]>`.
    pub fn from_slice(bytes: &[u8]) -> CompressedRistretto {
        let mut tmp = [0u8; 32];

        tmp.copy_from_slice(bytes);

        CompressedRistretto(tmp)
    }

    /// Attempt to decompress to an `RistrettoPoint`.
    ///
    /// # Return
    ///
    /// - `Some(RistrettoPoint)` if `self` was the canonical encoding of a point;
    ///
    /// - `None` if `self` was not the canonical encoding of a point.
    pub fn decompress(&self) -> Option<RistrettoPoint> {
        // Step 1. Check s for validity:
        // 1.a) s must be 32 bytes (we get this from the type system)
        // 1.b) s < p
        // 1.c) s is nonnegative
        //
        // Our decoding routine ignores the high bit, so the only
        // possible failure for 1.b) is if someone encodes s in 0..18
        // as s+p in 2^255-19..2^255-1.  We can check this by
        // converting back to bytes, and checking that we get the
        // original input, since our encoding routine is canonical.

        let s = FieldElement::from_bytes(self.as_bytes());
        let s_bytes_check = s.to_bytes();
        let s_encoding_is_canonical =
            &s_bytes_check[..].ct_eq(self.as_bytes());
        let s_is_negative = s.is_negative();

        if s_encoding_is_canonical.unwrap_u8() == 0u8 || s_is_negative.unwrap_u8() == 1u8 {
            return None;
        }

        // Step 2.  Compute (X:Y:Z:T).
        let one = FieldElement::one();
        let ss = s.square();
        let u1 = &one - &ss;      //  1 + as²
        let u2 = &one + &ss;      //  1 - as²    where a=-1
        let u2_sqr = u2.square(); // (1 - as²)²

        // v == ad(1+as²)² - (1-as²)²            where d=-121665/121666
        let v = &(&(-&constants::EDWARDS_D) * &u1.square()) - &u2_sqr;

        let (ok, I) = (&v * &u2_sqr).invsqrt(); // 1/sqrt(v*u_2²)

        let Dx = &I * &u2;         // 1/sqrt(v)
        let Dy = &I * &(&Dx * &v); // 1/u2

        // x == | 2s/sqrt(v) | == + sqrt(4s²/(ad(1+as²)² - (1-as²)²))
        let mut x = &(&s + &s) * &Dx;
        let x_neg = x.is_negative();
        x.conditional_negate(x_neg);

        // y == (1-as²)/(1+as²)
        let y = &u1 * &Dy;

        // t == ((1+as²) sqrt(4s²/(ad(1+as²)² - (1-as²)²)))/(1-as²)
        let t = &x * &y;

        if ok.unwrap_u8() == 0u8 || t.is_negative().unwrap_u8() == 1u8 || y.is_zero().unwrap_u8() == 1u8 {
            return None;
        } else {
            return Some(RistrettoPoint(EdwardsPoint{X: x, Y: y, Z: one, T: t}));
        }
    }
}

impl Identity for CompressedRistretto {
    fn identity() -> CompressedRistretto {
        CompressedRistretto([0u8; 32])
    }
}

impl Default for CompressedRistretto {
    fn default() -> CompressedRistretto {
        CompressedRistretto::identity()
    }
}

// ------------------------------------------------------------------------
// Serde support
// ------------------------------------------------------------------------
// Serializes to and from `RistrettoPoint` directly, doing compression
// and decompression internally.  This means that users can create
// structs containing `RistrettoPoint`s and use Serde's derived
// serializers to serialize those structures.

#[cfg(feature = "serde")]
use serde::{self, Serialize, Deserialize, Serializer, Deserializer};
#[cfg(feature = "serde")]
use serde::de::Visitor;

#[cfg(feature = "serde")]
impl Serialize for RistrettoPoint {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where S: Serializer
    {
        serializer.serialize_bytes(self.compress().as_bytes())
    }
}

#[cfg(feature = "serde")]
impl Serialize for CompressedRistretto {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where S: Serializer
    {
        serializer.serialize_bytes(self.as_bytes())
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for RistrettoPoint {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where D: Deserializer<'de>
    {
        struct RistrettoPointVisitor;

        impl<'de> Visitor<'de> for RistrettoPointVisitor {
            type Value = RistrettoPoint;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("a valid point in Ristretto format")
            }

            fn visit_bytes<E>(self, v: &[u8]) -> Result<RistrettoPoint, E>
                where E: serde::de::Error
            {
                if v.len() == 32 {
                    let mut arr32 = [0u8; 32];
                    arr32[0..32].copy_from_slice(v);
                    CompressedRistretto(arr32)
                        .decompress()
                        .ok_or(serde::de::Error::custom("decompression failed"))
                } else {
                    Err(serde::de::Error::invalid_length(v.len(), &self))
                }
            }
        }

        deserializer.deserialize_bytes(RistrettoPointVisitor)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for CompressedRistretto {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where D: Deserializer<'de>
    {
        struct CompressedRistrettoVisitor;

        impl<'de> Visitor<'de> for CompressedRistrettoVisitor {
            type Value = CompressedRistretto;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("32 bytes of data")
            }

            fn visit_bytes<E>(self, v: &[u8]) -> Result<CompressedRistretto, E>
                where E: serde::de::Error
            {
                if v.len() == 32 {
                    let mut arr32 = [0u8; 32];
                    arr32[0..32].copy_from_slice(v);
                    Ok(CompressedRistretto(arr32))
                } else {
                    Err(serde::de::Error::invalid_length(v.len(), &self))
                }
            }
        }

        deserializer.deserialize_bytes(CompressedRistrettoVisitor)
    }
}

// ------------------------------------------------------------------------
// Internal point representations
// ------------------------------------------------------------------------

/// A `RistrettoPoint` represents a point in the Ristretto group for
/// Curve25519.  Ristretto, a variant of Decaf, constructs a
/// prime-order group as a quotient group of a subgroup of (the
/// Edwards form of) Curve25519.
///
/// Internally, a `RistrettoPoint` is implemented as a wrapper type
/// around `EdwardsPoint`, with custom equality, compression, and
/// decompression routines to account for the quotient.  This means that
/// operations on `RistrettoPoint`s are exactly as fast as operations on
/// `EdwardsPoint`s.
///
#[derive(Copy, Clone)]
pub struct RistrettoPoint(pub(crate) EdwardsPoint);

impl RistrettoPoint {
    /// Compress this point using the Ristretto encoding.
    pub fn compress(&self) -> CompressedRistretto {
        let mut X = self.0.X;
        let mut Y = self.0.Y;
        let Z = &self.0.Z;
        let T = &self.0.T;

        let u1 = &(Z + &Y) * &(Z - &Y);
        let u2 = &X * &Y;
        // Ignore return value since this is always square
        let (_, invsqrt) = (&u1 * &u2.square()).invsqrt();
        let i1 = &invsqrt * &u1;
        let i2 = &invsqrt * &u2;
        let z_inv = &i1 * &(&i2 * T);
        let mut den_inv = i2;

        let iX = &X * &constants::SQRT_M1;
        let iY = &Y * &constants::SQRT_M1;
        let ristretto_magic = &constants::INVSQRT_A_MINUS_D;
        let enchanted_denominator = &i1 * ristretto_magic;

        let rotate = (T * &z_inv).is_negative();

        X.conditional_assign(&iY, rotate);
        Y.conditional_assign(&iX, rotate);
        den_inv.conditional_assign(&enchanted_denominator, rotate);

        Y.conditional_negate((&X * &z_inv).is_negative());

        let mut s = &den_inv * &(Z - &Y);
        let s_is_negative = s.is_negative();
        s.conditional_negate(s_is_negative);

        CompressedRistretto(s.to_bytes())
    }

    /// Double-and-compress a batch of points.  The Ristretto encoding
    /// is not batchable, since it requires an inverse square root.
    ///
    /// However, given input points \\( P\_1, \ldots, P\_n, \\)
    /// it is possible to compute the encodings of their doubles \\(
    /// \mathrm{enc}( [2]P\_1), \ldots, \mathrm{enc}( [2]P\_n ) \\)
    /// in a batch.
    ///
    /// ```
    /// # extern crate curve25519_dalek;
    /// # use curve25519_dalek::ristretto::RistrettoPoint;
    /// extern crate rand_os;
    /// use rand_os::OsRng;
    ///
    /// # // Need fn main() here in comment so the doctest compiles
    /// # // See https://doc.rust-lang.org/book/documentation.html#documentation-as-tests
    /// # fn main() {
    /// let mut rng = OsRng::new().unwrap();
    /// let points: Vec<RistrettoPoint> =
    ///     (0..32).map(|_| RistrettoPoint::random(&mut rng)).collect();
    ///
    /// let compressed = RistrettoPoint::double_and_compress_batch(&points);
    ///
    /// for (P, P2_compressed) in points.iter().zip(compressed.iter()) {
    ///     assert_eq!(*P2_compressed, (P + P).compress());
    /// }
    /// # }
    /// ```
    #[cfg(feature = "alloc")]
    pub fn double_and_compress_batch<'a, I>(points: I) -> Vec<CompressedRistretto>
        where I: IntoIterator<Item = &'a RistrettoPoint>
    {
        #[derive(Copy, Clone, Debug)]
        struct BatchCompressState {
            e: FieldElement,
            f: FieldElement,
            g: FieldElement,
            h: FieldElement,
            eg: FieldElement,
            fh: FieldElement,
        }

        impl BatchCompressState {
            fn efgh(&self) -> FieldElement {
                &self.eg * &self.fh
            }
        }

        impl<'a> From<&'a RistrettoPoint> for BatchCompressState {
            fn from(P: &'a RistrettoPoint) -> BatchCompressState {
                let XX = P.0.X.square();
                let YY = P.0.Y.square();
                let ZZ = P.0.Z.square();
                let dTT = &P.0.T.square() * &constants::EDWARDS_D;

                let e = &P.0.X * &(&P.0.Y + &P.0.Y); // = 2*X*Y
                let f = &ZZ + &dTT;                  // = Z^2 + d*T^2
                let g = &YY + &XX;                   // = Y^2 - a*X^2
                let h = &ZZ - &dTT;                  // = Z^2 - d*T^2

                let eg = &e * &g;
                let fh = &f * &h;

                BatchCompressState{ e: e, f: f, g: g, h: h, eg: eg, fh: fh }
            }
        }

        let states: Vec<BatchCompressState> = points.into_iter().map(|P| BatchCompressState::from(P)).collect();

        let mut invs: Vec<FieldElement> = states.iter().map(|state| state.efgh()).collect();

        FieldElement::batch_invert(&mut invs[..]);

        states.iter().zip(invs.iter()).map(|(state, inv): (&BatchCompressState, &FieldElement)| {
            let Zinv = &state.eg * &inv;
            let Tinv = &state.fh * &inv;

            let mut magic = constants::INVSQRT_A_MINUS_D;

            let negcheck1 = (&state.eg * &Zinv).is_negative();

            let mut e = state.e;
            let mut g = state.g;
            let mut h = state.h;

            let minus_e = -&e;
            let f_times_sqrta = &state.f * &constants::SQRT_M1;

            e.conditional_assign(&state.g,       negcheck1);
            g.conditional_assign(&minus_e,       negcheck1);
            h.conditional_assign(&f_times_sqrta, negcheck1);

            magic.conditional_assign(&constants::SQRT_M1, negcheck1);

            let negcheck2 = (&(&h * &e) * &Zinv).is_negative();

            g.conditional_negate(negcheck2);

            let mut s = &(&h - &g) * &(&magic * &(&g * &Tinv));

            let s_is_negative = s.is_negative();
            s.conditional_negate(s_is_negative);

            CompressedRistretto(s.to_bytes())
        }).collect()
    }


    /// Return the coset self + E[4], for debugging.
    fn coset4(&self) -> [EdwardsPoint; 4] {
        [  self.0
        , &self.0 + &constants::EIGHT_TORSION[2]
        , &self.0 + &constants::EIGHT_TORSION[4]
        , &self.0 + &constants::EIGHT_TORSION[6]
        ]
    }

    /// Computes the Ristretto Elligator map.
    ///
    /// # Note
    ///
    /// This method is not public because it's just used for hashing
    /// to a point -- proper elligator support is deferred for now.
    pub(crate) fn elligator_ristretto_flavor(r_0: &FieldElement) -> RistrettoPoint {
        let (i, d) = (&constants::SQRT_M1, &constants::EDWARDS_D);
        let one = FieldElement::one();
        let one_minus_d_sq = &one - &d.square();
        let d_minus_one_sq = (d - &one).square();

        let r = i * &r_0.square();
        let N_s = &(&r + &one) * &one_minus_d_sq;
        let mut c = -&one;
        let D = &(&c - &(d * &r)) * &(&r + d);

        let (Ns_D_is_sq, mut s) = FieldElement::sqrt_ratio_i(&N_s, &D);
        let mut s_prime = &s * r_0;
        let s_prime_is_pos = !s_prime.is_negative();
        s_prime.conditional_negate(s_prime_is_pos);

        s.conditional_assign(&s_prime, !Ns_D_is_sq);
        c.conditional_assign(&r, !Ns_D_is_sq);

        let N_t = &(&(&c * &(&r - &one)) * &d_minus_one_sq) - &D;
        let s_sq = s.square();

        use backend::serial::curve_models::CompletedPoint;

        // The conversion from W_i is exactly the conversion from P1xP1.
        RistrettoPoint(CompletedPoint{
            X: &(&s + &s) * &D,
            Z: &N_t * &constants::SQRT_AD_MINUS_ONE,
            Y: &FieldElement::one() - &s_sq,
            T: &FieldElement::one() + &s_sq,
        }.to_extended())
    }

    /// Return a `RistrettoPoint` chosen uniformly at random using a user-provided RNG.
    ///
    /// # Inputs
    ///
    /// * `rng`: any RNG which implements the `RngCore + CryptoRng` interface.
    ///
    /// # Returns
    ///
    /// A random element of the Ristretto group.
    ///
    /// # Implementation
    ///
    /// Uses the Ristretto-flavoured Elligator 2 map, so that the
    /// discrete log of the output point with respect to any other
    /// point should be unknown.  The map is applied twice and the
    /// results are added, to ensure a uniform distribution.
    pub fn random<R: RngCore + CryptoRng>(rng: &mut R) -> Self {
        let mut uniform_bytes = [0u8; 64];
        rng.fill_bytes(&mut uniform_bytes);

        RistrettoPoint::from_uniform_bytes(&uniform_bytes)
    }

    /// Hash a slice of bytes into a `RistrettoPoint`.
    ///
    /// Takes a type parameter `D`, which is any `Digest` producing 64
    /// bytes of output.
    ///
    /// Convenience wrapper around `from_hash`.
    ///
    /// # Implementation
    ///
    /// Uses the Ristretto-flavoured Elligator 2 map, so that the
    /// discrete log of the output point with respect to any other
    /// point should be unknown.  The map is applied twice and the
    /// results are added, to ensure a uniform distribution.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate curve25519_dalek;
    /// # use curve25519_dalek::ristretto::RistrettoPoint;
    /// extern crate sha2;
    /// use sha2::Sha512;
    ///
    /// # // Need fn main() here in comment so the doctest compiles
    /// # // See https://doc.rust-lang.org/book/documentation.html#documentation-as-tests
    /// # fn main() {
    /// let msg = "To really appreciate architecture, you may even need to commit a murder";
    /// let P = RistrettoPoint::hash_from_bytes::<Sha512>(msg.as_bytes());
    /// # }
    /// ```
    ///
    pub fn hash_from_bytes<D>(input: &[u8]) -> RistrettoPoint
        where D: Digest<OutputSize = U64> + Default
    {
        let mut hash = D::default();
        hash.input(input);
        RistrettoPoint::from_hash(hash)
    }

    /// Construct a `RistrettoPoint` from an existing `Digest` instance.
    ///
    /// Use this instead of `hash_from_bytes` if it is more convenient
    /// to stream data into the `Digest` than to pass a single byte
    /// slice.
    pub fn from_hash<D>(hash: D) -> RistrettoPoint
        where D: Digest<OutputSize = U64> + Default
    {
        // dealing with generic arrays is clumsy, until const generics land
        let output = hash.result();
        let mut output_bytes = [0u8; 64];
        output_bytes.copy_from_slice(&output.as_slice());

        RistrettoPoint::from_uniform_bytes(&output_bytes)
    }

    /// Construct a `RistrettoPoint` from 64 bytes of data.
    ///
    /// If the input bytes are uniformly distributed, the resulting
    /// point will be uniformly distributed over the group, and its
    /// discrete log with respect to other points should be unknown.
    ///
    /// # Implementation
    ///
    /// This function splits the input array into two 32-byte halves,
    /// takes the low 255 bits of each half mod p, applies the
    /// Ristretto-flavored Elligator map to each, and adds the results.
    pub fn from_uniform_bytes(bytes: &[u8; 64]) -> RistrettoPoint {
        let mut r_1_bytes = [0u8; 32];
        r_1_bytes.copy_from_slice(&bytes[0..32]);
        let r_1 = FieldElement::from_bytes(&r_1_bytes);
        let R_1 = RistrettoPoint::elligator_ristretto_flavor(&r_1);

        let mut r_2_bytes = [0u8; 32];
        r_2_bytes.copy_from_slice(&bytes[32..64]);
        let r_2 = FieldElement::from_bytes(&r_2_bytes);
        let R_2 = RistrettoPoint::elligator_ristretto_flavor(&r_2);

        // Applying Elligator twice and adding the results ensures a
        // uniform distribution.
        &R_1 + &R_2
    }
}

impl Identity for RistrettoPoint {
    fn identity() -> RistrettoPoint {
        RistrettoPoint(EdwardsPoint::identity())
    }
}

impl Default for RistrettoPoint {
    fn default() -> RistrettoPoint {
        RistrettoPoint::identity()
    }
}

// ------------------------------------------------------------------------
// Equality
// ------------------------------------------------------------------------

impl PartialEq for RistrettoPoint {
    fn eq(&self, other: &RistrettoPoint) -> bool {
        self.ct_eq(other).unwrap_u8() == 1u8
    }
}

impl ConstantTimeEq for RistrettoPoint {
    /// Test equality between two `RistrettoPoint`s.
    ///
    /// # Returns
    ///
    /// * `Choice(1)` if the two `RistrettoPoint`s are equal;
    /// * `Choice(0)` otherwise.
    fn ct_eq(&self, other: &RistrettoPoint) -> Choice {
        let X1Y2 = &self.0.X * &other.0.Y;
        let Y1X2 = &self.0.Y * &other.0.X;
        let X1X2 = &self.0.X * &other.0.X;
        let Y1Y2 = &self.0.Y * &other.0.Y;

        X1Y2.ct_eq(&Y1X2) | X1X2.ct_eq(&Y1Y2)
    }
}

impl Eq for RistrettoPoint {}

// ------------------------------------------------------------------------
// Arithmetic
// ------------------------------------------------------------------------

impl<'a, 'b> Add<&'b RistrettoPoint> for &'a RistrettoPoint {
    type Output = RistrettoPoint;

    fn add(self, other: &'b RistrettoPoint) -> RistrettoPoint {
        RistrettoPoint(&self.0 + &other.0)
    }
}

define_add_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint, Output = RistrettoPoint);

impl<'b> AddAssign<&'b RistrettoPoint> for RistrettoPoint {
    fn add_assign(&mut self, _rhs: &RistrettoPoint) {
        *self = (self as &RistrettoPoint) + _rhs;
    }
}

define_add_assign_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint);

impl<'a, 'b> Sub<&'b RistrettoPoint> for &'a RistrettoPoint {
    type Output = RistrettoPoint;

    fn sub(self, other: &'b RistrettoPoint) -> RistrettoPoint {
        RistrettoPoint(&self.0 - &other.0)
    }
}

define_sub_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint, Output = RistrettoPoint);

impl<'b> SubAssign<&'b RistrettoPoint> for RistrettoPoint {
    fn sub_assign(&mut self, _rhs: &RistrettoPoint) {
        *self = (self as &RistrettoPoint) - _rhs;
    }
}

define_sub_assign_variants!(LHS = RistrettoPoint, RHS = RistrettoPoint);

impl<T> Sum<T> for RistrettoPoint
where
    T: Borrow<RistrettoPoint>
{
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = T>
    {
        iter.fold(RistrettoPoint::identity(), |acc, item| acc + item.borrow())
    }
}

impl<'a> Neg for &'a RistrettoPoint {
    type Output = RistrettoPoint;

    fn neg(self) -> RistrettoPoint {
        RistrettoPoint(-&self.0)
    }
}

impl Neg for RistrettoPoint {
    type Output = RistrettoPoint;

    fn neg(self) -> RistrettoPoint {
        -&self
    }
}

impl<'b> MulAssign<&'b Scalar> for RistrettoPoint {
    fn mul_assign(&mut self, scalar: &'b Scalar) {
        let result = (self as &RistrettoPoint) * scalar;
        *self = result;
    }
}

impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoPoint {
    type Output = RistrettoPoint;
    /// Scalar multiplication: compute `scalar * self`.
    fn mul(self, scalar: &'b Scalar) -> RistrettoPoint {
        RistrettoPoint(&self.0 * scalar)
    }
}

impl<'a, 'b> Mul<&'b RistrettoPoint> for &'a Scalar {
    type Output = RistrettoPoint;

    /// Scalar multiplication: compute `self * scalar`.
    fn mul(self, point: &'b RistrettoPoint) -> RistrettoPoint {
        RistrettoPoint(self * &point.0)
    }
}

define_mul_assign_variants!(LHS = RistrettoPoint, RHS = Scalar);

define_mul_variants!(LHS = RistrettoPoint, RHS = Scalar, Output = RistrettoPoint);
define_mul_variants!(LHS = Scalar, RHS = RistrettoPoint, Output = RistrettoPoint);

// ------------------------------------------------------------------------
// Multiscalar Multiplication impls
// ------------------------------------------------------------------------

// These use iterator combinators to unwrap the underlying points and
// forward to the EdwardsPoint implementations.

#[cfg(feature = "alloc")]
impl MultiscalarMul for RistrettoPoint {
    type Point = RistrettoPoint;

    fn multiscalar_mul<I, J>(scalars: I, points: J) -> RistrettoPoint
    where
        I: IntoIterator,
        I::Item: Borrow<Scalar>,
        J: IntoIterator,
        J::Item: Borrow<RistrettoPoint>,
    {
        let extended_points = points.into_iter().map(|P| P.borrow().0);
        RistrettoPoint(
            EdwardsPoint::multiscalar_mul(scalars, extended_points)
        )
    }
}

#[cfg(feature = "alloc")]
impl VartimeMultiscalarMul for RistrettoPoint {
    type Point = RistrettoPoint;

    fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<RistrettoPoint>
    where
        I: IntoIterator,
        I::Item: Borrow<Scalar>,
        J: IntoIterator<Item = Option<RistrettoPoint>>,
    {
        let extended_points = points.into_iter().map(|opt_P| opt_P.map(|P| P.borrow().0));

        EdwardsPoint::optional_multiscalar_mul(scalars, extended_points).map(|P| RistrettoPoint(P))
    }
}

/// Precomputation for variable-time multiscalar multiplication with `RistrettoPoint`s.
// This wraps the inner implementation in a facade type so that we can
// decouple stability of the inner type from the stability of the
// outer type.
#[cfg(feature = "alloc")]
pub struct VartimeRistrettoPrecomputation(scalar_mul::precomputed_straus::VartimePrecomputedStraus);

#[cfg(feature = "alloc")]
impl VartimePrecomputedMultiscalarMul for VartimeRistrettoPrecomputation {
    type Point = RistrettoPoint;

    fn new<I>(static_points: I) -> Self
    where
        I: IntoIterator,
        I::Item: Borrow<Self::Point>,
    {
        Self(
            scalar_mul::precomputed_straus::VartimePrecomputedStraus::new(
                static_points.into_iter().map(|P| P.borrow().0),
            ),
        )
    }

    fn optional_mixed_multiscalar_mul<I, J, K>(
        &self,
        static_scalars: I,
        dynamic_scalars: J,
        dynamic_points: K,
    ) -> Option<Self::Point>
    where
        I: IntoIterator,
        I::Item: Borrow<Scalar>,
        J: IntoIterator,
        J::Item: Borrow<Scalar>,
        K: IntoIterator<Item = Option<Self::Point>>,
    {
        self.0
            .optional_mixed_multiscalar_mul(
                static_scalars,
                dynamic_scalars,
                dynamic_points.into_iter().map(|P_opt| P_opt.map(|P| P.0)),
            )
            .map(|P_ed| RistrettoPoint(P_ed))
    }
}

impl RistrettoPoint {
    /// Compute \\(aA + bB\\) in variable time, where \\(B\\) is the
    /// Ristretto basepoint.
    #[cfg(feature = "stage2_build")]
    pub fn vartime_double_scalar_mul_basepoint(
        a: &Scalar,
        A: &RistrettoPoint,
        b: &Scalar,
    ) -> RistrettoPoint {
        RistrettoPoint(
            EdwardsPoint::vartime_double_scalar_mul_basepoint(a, &A.0, b)
        )
    }
}

/// A precomputed table of multiples of a basepoint, used to accelerate
/// scalar multiplication.
///
/// A precomputed table of multiples of the Ristretto basepoint is
/// available in the `constants` module:
/// ```
/// use curve25519_dalek::constants;
/// use curve25519_dalek::scalar::Scalar;
///
/// let a = Scalar::from(87329482u64);
/// let P = &a * &constants::RISTRETTO_BASEPOINT_TABLE;
/// ```
#[derive(Clone)]
pub struct RistrettoBasepointTable(pub(crate) EdwardsBasepointTable);

impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoBasepointTable {
    type Output = RistrettoPoint;

    fn mul(self, scalar: &'b Scalar) -> RistrettoPoint {
        RistrettoPoint(&self.0 * scalar)
    }
}

impl<'a, 'b> Mul<&'a RistrettoBasepointTable> for &'b Scalar {
    type Output = RistrettoPoint;

    fn mul(self, basepoint_table: &'a RistrettoBasepointTable) -> RistrettoPoint {
        RistrettoPoint(self * &basepoint_table.0)
    }
}

impl RistrettoBasepointTable {
    /// Create a precomputed table of multiples of the given `basepoint`.
    pub fn create(basepoint: &RistrettoPoint) -> RistrettoBasepointTable {
        RistrettoBasepointTable(EdwardsBasepointTable::create(&basepoint.0))
    }

    /// Get the basepoint for this table as a `RistrettoPoint`.
    pub fn basepoint(&self) -> RistrettoPoint {
        RistrettoPoint(self.0.basepoint())
    }
}

// ------------------------------------------------------------------------
// Constant-time conditional selection
// ------------------------------------------------------------------------

impl ConditionallySelectable for RistrettoPoint {
    /// Conditionally select between `self` and `other`.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate subtle;
    /// # extern crate curve25519_dalek;
    /// #
    /// use subtle::ConditionallySelectable;
    /// use subtle::Choice;
    /// #
    /// # use curve25519_dalek::traits::Identity;
    /// # use curve25519_dalek::ristretto::RistrettoPoint;
    /// # use curve25519_dalek::constants;
    /// # fn main() {
    ///
    /// let A = RistrettoPoint::identity();
    /// let B = constants::RISTRETTO_BASEPOINT_POINT;
    ///
    /// let mut P = A;
    ///
    /// P = RistrettoPoint::conditional_select(&A, &B, Choice::from(0));
    /// assert_eq!(P, A);
    /// P = RistrettoPoint::conditional_select(&A, &B, Choice::from(1));
    /// assert_eq!(P, B);
    /// # }
    /// ```
    fn conditional_select(
        a: &RistrettoPoint,
        b: &RistrettoPoint,
        choice: Choice,
    ) -> RistrettoPoint {
        RistrettoPoint(EdwardsPoint::conditional_select(&a.0, &b.0, choice))
    }
}

// ------------------------------------------------------------------------
// Debug traits
// ------------------------------------------------------------------------

impl Debug for CompressedRistretto {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "CompressedRistretto: {:?}", self.as_bytes())
    }
}

impl Debug for RistrettoPoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        let coset = self.coset4();
        write!(f, "RistrettoPoint: coset \n{:?}\n{:?}\n{:?}\n{:?}",
               coset[0], coset[1], coset[2], coset[3])
    }
}

// ------------------------------------------------------------------------
// Tests
// ------------------------------------------------------------------------

#[cfg(all(test, feature = "stage2_build"))]
mod test {
    #[cfg(feature = "rand")]
    use rand_os::OsRng;

    use scalar::Scalar;
    use constants;
    use edwards::CompressedEdwardsY;
    use traits::{Identity, ValidityCheck};
    use super::*;

    #[test]
    #[cfg(feature = "serde")]
    fn serde_bincode_basepoint_roundtrip() {
        use bincode;

        let encoded = bincode::serialize(&constants::RISTRETTO_BASEPOINT_POINT).unwrap();
        let enc_compressed = bincode::serialize(&constants::RISTRETTO_BASEPOINT_COMPRESSED).unwrap();
        assert_eq!(encoded, enc_compressed);

        let dec_uncompressed: RistrettoPoint = bincode::deserialize(&encoded).unwrap();
        let dec_compressed: CompressedRistretto = bincode::deserialize(&encoded).unwrap();

        assert_eq!(dec_uncompressed, constants::RISTRETTO_BASEPOINT_POINT);
        assert_eq!(dec_compressed, constants::RISTRETTO_BASEPOINT_COMPRESSED);
    }

    #[test]
    fn scalarmult_ristrettopoint_works_both_ways() {
        let P = constants::RISTRETTO_BASEPOINT_POINT;
        let s = Scalar::from(999u64);

        let P1 = &P * &s;
        let P2 = &s * &P;

        assert!(P1.compress().as_bytes() == P2.compress().as_bytes());
    }

    #[test]
    fn impl_sum() {

        // Test that sum works for non-empty iterators
        let BASE = constants::RISTRETTO_BASEPOINT_POINT;

        let s1 = Scalar::from(999u64);
        let P1 = &BASE * &s1;

        let s2 = Scalar::from(333u64);
        let P2 = &BASE * &s2;

        let vec = vec![P1.clone(), P2.clone()];
        let sum: RistrettoPoint = vec.iter().sum();

        assert_eq!(sum, P1 + P2);

        // Test that sum works for the empty iterator
        let empty_vector: Vec<RistrettoPoint> = vec![];
        let sum: RistrettoPoint = empty_vector.iter().sum();

        assert_eq!(sum, RistrettoPoint::identity());

        // Test that sum works on owning iterators
        let s = Scalar::from(2u64);
        let mapped = vec.iter().map(|x| x * &s);
        let sum: RistrettoPoint = mapped.sum();

        assert_eq!(sum, &P1 * &s + &P2 * &s);
    }

    #[test]
    fn decompress_negative_s_fails() {
        // constants::d is neg, so decompression should fail as |d| != d.
        let bad_compressed = CompressedRistretto(constants::EDWARDS_D.to_bytes());
        assert!(bad_compressed.decompress().is_none());
    }

    #[test]
    fn decompress_id() {
        let compressed_id = CompressedRistretto::identity();
        let id = compressed_id.decompress().unwrap();
        let mut identity_in_coset = false;
        for P in &id.coset4() {
            if P.compress() == CompressedEdwardsY::identity() {
                identity_in_coset = true;
            }
        }
        assert!(identity_in_coset);
    }

    #[test]
    fn compress_id() {
        let id = RistrettoPoint::identity();
        assert_eq!(id.compress(), CompressedRistretto::identity());
    }

    #[test]
    fn basepoint_roundtrip() {
        let bp_compressed_ristretto = constants::RISTRETTO_BASEPOINT_POINT.compress();
        let bp_recaf = bp_compressed_ristretto.decompress().unwrap().0;
        // Check that bp_recaf differs from bp by a point of order 4
        let diff = &constants::RISTRETTO_BASEPOINT_POINT.0 - &bp_recaf;
        let diff4 = diff.mul_by_pow_2(2);
        assert_eq!(diff4.compress(), CompressedEdwardsY::identity());
    }

    #[test]
    fn encodings_of_small_multiples_of_basepoint() {
        // Table of encodings of i*basepoint
        // Generated using ristretto.sage
        let compressed = [
            CompressedRistretto([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
            CompressedRistretto([226, 242, 174, 10, 106, 188, 78, 113, 168, 132, 169, 97, 197, 0, 81, 95, 88, 227, 11, 106, 165, 130, 221, 141, 182, 166, 89, 69, 224, 141, 45, 118]),
            CompressedRistretto([106, 73, 50, 16, 247, 73, 156, 209, 127, 236, 181, 16, 174, 12, 234, 35, 161, 16, 232, 213, 185, 1, 248, 172, 173, 211, 9, 92, 115, 163, 185, 25]),
            CompressedRistretto([148, 116, 31, 93, 93, 82, 117, 94, 206, 79, 35, 240, 68, 238, 39, 213, 209, 234, 30, 43, 209, 150, 180, 98, 22, 107, 22, 21, 42, 157, 2, 89]),
            CompressedRistretto([218, 128, 134, 39, 115, 53, 139, 70, 111, 250, 223, 224, 179, 41, 58, 179, 217, 253, 83, 197, 234, 108, 149, 83, 88, 245, 104, 50, 45, 175, 106, 87]),
            CompressedRistretto([232, 130, 177, 49, 1, 107, 82, 193, 211, 51, 112, 128, 24, 124, 247, 104, 66, 62, 252, 203, 181, 23, 187, 73, 90, 184, 18, 196, 22, 15, 244, 78]),
            CompressedRistretto([246, 71, 70, 211, 201, 43, 19, 5, 14, 216, 216, 2, 54, 167, 240, 0, 124, 59, 63, 150, 47, 91, 167, 147, 209, 154, 96, 30, 187, 29, 244, 3]),
            CompressedRistretto([68, 245, 53, 32, 146, 110, 200, 31, 189, 90, 56, 120, 69, 190, 183, 223, 133, 169, 106, 36, 236, 225, 135, 56, 189, 207, 166, 167, 130, 42, 23, 109]),
            CompressedRistretto([144, 50, 147, 216, 242, 40, 126, 190, 16, 226, 55, 77, 193, 165, 62, 11, 200, 135, 229, 146, 105, 159, 2, 208, 119, 213, 38, 60, 221, 85, 96, 28]),
            CompressedRistretto([2, 98, 42, 206, 143, 115, 3, 163, 28, 175, 198, 63, 143, 196, 143, 220, 22, 225, 200, 200, 210, 52, 178, 240, 214, 104, 82, 130, 169, 7, 96, 49]),
            CompressedRistretto([32, 112, 111, 215, 136, 178, 114, 10, 30, 210, 165, 218, 212, 149, 43, 1, 244, 19, 188, 240, 231, 86, 77, 232, 205, 200, 22, 104, 158, 45, 185, 95]),
            CompressedRistretto([188, 232, 63, 139, 165, 221, 47, 165, 114, 134, 76, 36, 186, 24, 16, 249, 82, 43, 198, 0, 74, 254, 149, 135, 122, 199, 50, 65, 202, 253, 171, 66]),
            CompressedRistretto([228, 84, 158, 225, 107, 154, 160, 48, 153, 202, 32, 140, 103, 173, 175, 202, 250, 76, 63, 62, 78, 83, 3, 222, 96, 38, 227, 202, 143, 248, 68, 96]),
            CompressedRistretto([170, 82, 224, 0, 223, 46, 22, 245, 95, 177, 3, 47, 195, 59, 196, 39, 66, 218, 214, 189, 90, 143, 192, 190, 1, 103, 67, 108, 89, 72, 80, 31]),
            CompressedRistretto([70, 55, 107, 128, 244, 9, 178, 157, 194, 181, 246, 240, 197, 37, 145, 153, 8, 150, 229, 113, 111, 65, 71, 124, 211, 0, 133, 171, 127, 16, 48, 30]),
            CompressedRistretto([224, 196, 24, 247, 200, 217, 196, 205, 215, 57, 91, 147, 234, 18, 79, 58, 217, 144, 33, 187, 104, 29, 252, 51, 2, 169, 217, 154, 46, 83, 230, 78]),
        ];
        let mut bp = RistrettoPoint::identity();
        for i in 0..16 {
            assert_eq!(bp.compress(), compressed[i]);
            bp = &bp + &constants::RISTRETTO_BASEPOINT_POINT;
        }
    }

    #[test]
    fn four_torsion_basepoint() {
        let bp = constants::RISTRETTO_BASEPOINT_POINT;
        let bp_coset = bp.coset4();
        for i in 0..4 {
            assert_eq!(bp, RistrettoPoint(bp_coset[i]));
        }
    }

    #[cfg(feature = "rand")]
    #[test]
    fn four_torsion_random() {
        let mut rng = OsRng::new().unwrap();
        let B = &constants::RISTRETTO_BASEPOINT_TABLE;
        let P = B * &Scalar::random(&mut rng);
        let P_coset = P.coset4();
        for i in 0..4 {
            assert_eq!(P, RistrettoPoint(P_coset[i]));
        }
    }

    #[test]
    fn elligator_vs_ristretto_sage() {
        // Test vectors extracted from ristretto.sage.
        //
        // Notice that all of the byte sequences have bit 255 set to 0; this is because
        // ristretto.sage does not mask the high bit of a field element.  When the high bit is set,
        // the ristretto.sage elligator implementation gives different results, since it takes a
        // different field element as input.
        let bytes: [[u8;32]; 16] = [
            [184, 249, 135, 49, 253, 123, 89, 113, 67, 160, 6, 239, 7, 105, 211, 41, 192, 249, 185, 57, 9, 102, 70, 198, 15, 127, 7, 26, 160, 102, 134, 71],
            [229, 14, 241, 227, 75, 9, 118, 60, 128, 153, 226, 21, 183, 217, 91, 136, 98, 0, 231, 156, 124, 77, 82, 139, 142, 134, 164, 169, 169, 62, 250, 52],
            [115, 109, 36, 220, 180, 223, 99, 6, 204, 169, 19, 29, 169, 68, 84, 23, 21, 109, 189, 149, 127, 205, 91, 102, 172, 35, 112, 35, 134, 69, 186, 34],
            [16, 49, 96, 107, 171, 199, 164, 9, 129, 16, 64, 62, 241, 63, 132, 173, 209, 160, 112, 215, 105, 50, 157, 81, 253, 105, 1, 154, 229, 25, 120, 83],
            [156, 131, 161, 162, 236, 251, 5, 187, 167, 171, 17, 178, 148, 210, 90, 207, 86, 21, 79, 161, 167, 215, 234, 1, 136, 242, 182, 248, 38, 85, 79, 86],
            [251, 177, 124, 54, 18, 101, 75, 235, 245, 186, 19, 46, 133, 157, 229, 64, 10, 136, 181, 185, 78, 144, 254, 167, 137, 49, 107, 10, 61, 10, 21, 25],
            [232, 193, 20, 68, 240, 77, 186, 77, 183, 40, 44, 86, 150, 31, 198, 212, 76, 81, 3, 217, 197, 8, 126, 128, 126, 152, 164, 208, 153, 44, 189, 77],
            [173, 229, 149, 177, 37, 230, 30, 69, 61, 56, 172, 190, 219, 115, 167, 194, 71, 134, 59, 75, 28, 244, 118, 26, 162, 97, 64, 16, 15, 189, 30, 64],
            [106, 71, 61, 107, 250, 117, 42, 151, 91, 202, 212, 100, 52, 188, 190, 21, 125, 218, 31, 18, 253, 241, 160, 133, 57, 242, 3, 164, 189, 68, 111, 75],
            [112, 204, 182, 90, 220, 198, 120, 73, 173, 107, 193, 17, 227, 40, 162, 36, 150, 141, 235, 55, 172, 183, 12, 39, 194, 136, 43, 153, 244, 118, 91, 89],
            [111, 24, 203, 123, 254, 189, 11, 162, 51, 196, 163, 136, 204, 143, 10, 222, 33, 112, 81, 205, 34, 35, 8, 66, 90, 6, 164, 58, 170, 177, 34, 25],
            [225, 183, 30, 52, 236, 82, 6, 183, 109, 25, 227, 181, 25, 82, 41, 193, 80, 77, 161, 80, 242, 203, 79, 204, 136, 245, 131, 110, 237, 106, 3, 58],
            [207, 246, 38, 56, 30, 86, 176, 90, 27, 200, 61, 42, 221, 27, 56, 210, 79, 178, 189, 120, 68, 193, 120, 167, 77, 185, 53, 197, 124, 128, 191, 126],
            [1, 136, 215, 80, 240, 46, 63, 147, 16, 244, 230, 207, 82, 189, 74, 50, 106, 169, 138, 86, 30, 131, 214, 202, 166, 125, 251, 228, 98, 24, 36, 21],
            [210, 207, 228, 56, 155, 116, 207, 54, 84, 195, 251, 215, 249, 199, 116, 75, 109, 239, 196, 251, 194, 246, 252, 228, 70, 146, 156, 35, 25, 39, 241, 4],
            [34, 116, 123, 9, 8, 40, 93, 189, 9, 103, 57, 103, 66, 227, 3, 2, 157, 107, 134, 219, 202, 74, 230, 154, 78, 107, 219, 195, 214, 14, 84, 80],
        ];
        let encoded_images: [CompressedRistretto; 16] = [
            CompressedRistretto([176, 157, 237, 97, 66, 29, 140, 166, 168, 94, 26, 157, 212, 216, 229, 160, 195, 246, 232, 239, 169, 112, 63, 193, 64, 32, 152, 69, 11, 190, 246, 86]),
            CompressedRistretto([234, 141, 77, 203, 181, 225, 250, 74, 171, 62, 15, 118, 78, 212, 150, 19, 131, 14, 188, 238, 194, 244, 141, 138, 166, 162, 83, 122, 228, 201, 19, 26]),
            CompressedRistretto([232, 231, 51, 92, 5, 168, 80, 36, 173, 179, 104, 68, 186, 149, 68, 40, 140, 170, 27, 103, 99, 140, 21, 242, 43, 62, 250, 134, 208, 255, 61, 89]),
            CompressedRistretto([208, 120, 140, 129, 177, 179, 237, 159, 252, 160, 28, 13, 206, 5, 211, 241, 192, 218, 1, 97, 130, 241, 20, 169, 119, 46, 246, 29, 79, 80, 77, 84]),
            CompressedRistretto([202, 11, 236, 145, 58, 12, 181, 157, 209, 6, 213, 88, 75, 147, 11, 119, 191, 139, 47, 142, 33, 36, 153, 193, 223, 183, 178, 8, 205, 120, 248, 110]),
            CompressedRistretto([26, 66, 231, 67, 203, 175, 116, 130, 32, 136, 62, 253, 215, 46, 5, 214, 166, 248, 108, 237, 216, 71, 244, 173, 72, 133, 82, 6, 143, 240, 104, 41]),
            CompressedRistretto([40, 157, 102, 96, 201, 223, 200, 197, 150, 181, 106, 83, 103, 126, 143, 33, 145, 230, 78, 6, 171, 146, 210, 143, 112, 5, 245, 23, 183, 138, 18, 120]),
            CompressedRistretto([220, 37, 27, 203, 239, 196, 176, 131, 37, 66, 188, 243, 185, 250, 113, 23, 167, 211, 154, 243, 168, 215, 54, 171, 159, 36, 195, 81, 13, 150, 43, 43]),
            CompressedRistretto([232, 121, 176, 222, 183, 196, 159, 90, 238, 193, 105, 52, 101, 167, 244, 170, 121, 114, 196, 6, 67, 152, 80, 185, 221, 7, 83, 105, 176, 208, 224, 121]),
            CompressedRistretto([226, 181, 183, 52, 241, 163, 61, 179, 221, 207, 220, 73, 245, 242, 25, 236, 67, 84, 179, 222, 167, 62, 167, 182, 32, 9, 92, 30, 165, 127, 204, 68]),
            CompressedRistretto([226, 119, 16, 242, 200, 139, 240, 87, 11, 222, 92, 146, 156, 243, 46, 119, 65, 59, 1, 248, 92, 183, 50, 175, 87, 40, 206, 53, 208, 220, 148, 13]),
            CompressedRistretto([70, 240, 79, 112, 54, 157, 228, 146, 74, 122, 216, 88, 232, 62, 158, 13, 14, 146, 115, 117, 176, 222, 90, 225, 244, 23, 94, 190, 150, 7, 136, 96]),
            CompressedRistretto([22, 71, 241, 103, 45, 193, 195, 144, 183, 101, 154, 50, 39, 68, 49, 110, 51, 44, 62, 0, 229, 113, 72, 81, 168, 29, 73, 106, 102, 40, 132, 24]),
            CompressedRistretto([196, 133, 107, 11, 130, 105, 74, 33, 204, 171, 133, 221, 174, 193, 241, 36, 38, 179, 196, 107, 219, 185, 181, 253, 228, 47, 155, 42, 231, 73, 41, 78]),
            CompressedRistretto([58, 255, 225, 197, 115, 208, 160, 143, 39, 197, 82, 69, 143, 235, 92, 170, 74, 40, 57, 11, 171, 227, 26, 185, 217, 207, 90, 185, 197, 190, 35, 60]),
            CompressedRistretto([88, 43, 92, 118, 223, 136, 105, 145, 238, 186, 115, 8, 214, 112, 153, 253, 38, 108, 205, 230, 157, 130, 11, 66, 101, 85, 253, 110, 110, 14, 148, 112]),
        ];
        for i in 0..16 {
            let r_0 = FieldElement::from_bytes(&bytes[i]);
            let Q = RistrettoPoint::elligator_ristretto_flavor(&r_0);
            assert_eq!(Q.compress(), encoded_images[i]);
        }
    }

    #[cfg(feature = "rand")]
    #[test]
    fn random_roundtrip() {
        let mut rng = OsRng::new().unwrap();
        let B = &constants::RISTRETTO_BASEPOINT_TABLE;
        for _ in 0..100 {
            let P = B * &Scalar::random(&mut rng);
            let compressed_P = P.compress();
            let Q = compressed_P.decompress().unwrap();
            assert_eq!(P, Q);
        }
    }

    #[cfg(feature = "rand")]
    #[test]
    fn double_and_compress_1024_random_points() {
        let mut rng = OsRng::new().unwrap();

        let points: Vec<RistrettoPoint> =
            (0..1024).map(|_| RistrettoPoint::random(&mut rng)).collect();

        let compressed = RistrettoPoint::double_and_compress_batch(&points);

        for (P, P2_compressed) in points.iter().zip(compressed.iter()) {
            assert_eq!(*P2_compressed, (P + P).compress());
        }
    }

    #[cfg(feature = "rand")]
    #[test]
    fn random_is_valid() {
        let mut rng = OsRng::new().unwrap();
        for _ in 0..100 {
            let P = RistrettoPoint::random(&mut rng);
            // Check that P is on the curve
            assert!(P.0.is_valid());
            // Check that P is in the image of the ristretto map
            P.compress();
        }
    }

    #[test]
    fn vartime_precomputed_vs_nonprecomputed_multiscalar() {
        let mut rng = rand::thread_rng();

        let B = &::constants::RISTRETTO_BASEPOINT_TABLE;

        let static_scalars = (0..128)
            .map(|_| Scalar::random(&mut rng))
            .collect::<Vec<_>>();

        let dynamic_scalars = (0..128)
            .map(|_| Scalar::random(&mut rng))
            .collect::<Vec<_>>();

        let check_scalar: Scalar = static_scalars
            .iter()
            .chain(dynamic_scalars.iter())
            .map(|s| s * s)
            .sum();

        let static_points = static_scalars.iter().map(|s| s * B).collect::<Vec<_>>();
        let dynamic_points = dynamic_scalars.iter().map(|s| s * B).collect::<Vec<_>>();

        let precomputation = VartimeRistrettoPrecomputation::new(static_points.iter());

        let P = precomputation.vartime_mixed_multiscalar_mul(
            &static_scalars,
            &dynamic_scalars,
            &dynamic_points,
        );

        use traits::VartimeMultiscalarMul;
        let Q = RistrettoPoint::vartime_multiscalar_mul(
            static_scalars.iter().chain(dynamic_scalars.iter()),
            static_points.iter().chain(dynamic_points.iter()),
        );

        let R = &check_scalar * B;

        assert_eq!(P.compress(), R.compress());
        assert_eq!(Q.compress(), R.compress());
    }
}