
Economic Protocol In Dusk Smart Contracts

Emanuele Francioni∗ and Matteo Ferretti†

Dusk Network

INTRODUCTION

The economic model of Dusk encompasses the mecha-
nisms enabling smart contract owners to create economic
value through the services they offer. It consists of levy-
ing service fees, offsetting gas costs for users, and opti-
mizing gas payments for improved profitability. Essen-
tially, the economic model allows service providers to be
productized and generate revenue.

TERMINOLOGY

Throughout this document, we use the following terms:

• contract: smart contract method activated by the
user through a transaction.

• user: party initiating the contract transaction.

• gas: unit measure of computational resource.

• gas limit: the maximum amount of resources al-
located by a user or a contract to perform a com-
putation.

• gas consumed: the cost incurred in executing a
computation.

• gas unspent: the difference between gas limit
and gas consumed. If a computation requires
more resources than those allocated, then we incur
an insufficient gas error.

• gas price: amount of DUSK that a sender is will-
ing to spend per unit of gas (the amount is specified
in Lux, where 1 Lux equals 10-9 DUSK). The higher
the gas price, the more incentivized the block gen-
erators are to include the transaction in the next
block. This way, transactions with high gas prices
are generally confirmed more quickly. Because of
this, gas price generally determines the transac-
tion priority.

• p: percentage of gas consumed paid to the con-
tracts. The remaining percentage is paid to the
block generator. The optimal value of p is esti-
mated to be between 20% and 40%, pending threat
model analysis.

∗ emanuele@dusk.network
† matteo@dusk.network

• ICC (inter-contract call): interaction between mul-
tiple contracts. ICCs cannot be called directly. As
such, the contract methods should be tagged as
C2C (contract-to-contract) or direct. The former
can only be called by another contract, while the
latter can be called exclusively by a user (through
a transaction).

• fee: amount of DUSK charged by a smart contract
to a user, when the former requires payment for its
services. The fee is known by the transfer contract
(changeable through a transaction), but needs to
be communicated to the user, who approves/signs
it. This way the possibility of fee malleability is
removed, thus preventing a bait-and-switch attack
where a contract could change the fee with a high
priority transaction and drain the user’s funds.

• contract account: in the scenario where the con-
tract pays for gas on behalf of the user, this account
is where fees are accrued and gas is paid.

• provider: intermediary service entity between a
user and a contract.

• transfer contract: the smart contract responsi-
ble for handling DUSK and implementing any logic
related to the economics of transactions.

• block generator: full-node that is eligible to pro-
pose a candidate block to the network.

SPECIFICATION

In this section, we describe how gas is handled in dif-
ferent scenarios. We summarize all cases in Table I.

Scenario 1: User pays gas

This case mirrors the conventional gas expenditure
method in most blockchains. The user specifies a gas
limit and a gas price.

Normal flow

In this case, (100-p)% gas consumed is transferred
to the block generator, and p % is distributed to
all touched contracts, weighted proportionally to the
amount of gas consumed by each contract.
This is the default scenario, where the user pays for

gas and every contract gets paid for their usage. The



2

Scenario
Normal flow Insufficient gas

gas unspent gas consumed fee gas consumed fee

1. User pays gas

• (100-p)% awarded to block generator

no fee no fee
100% reverts to the user • p % paid to executed contracts 100% to block generator

(as change) distributed according to gas consumed (paid by user)

by each ICC

• (100-p)% awarded to block generator

returned to user
2. User pays gas, 100% reverts to the user • p % paid to executed contracts paid to 100% to block generator

contract applies fee (as change) distributed according to gas consumed charging contract (paid by user)

by each ICC

• (100-p)% awarded to block generator

returned to user
3. Contract pays gas, 100% reverts to the contract • p % paid to executed contracts paid to 100% locked for

contract applies fee (as change) distributed according to gas consumed charging contract a number of epochs

by each ICC

• (100-p)% awarded to block generator

returned to user
4. Percentage of 100% reverts to the user • p % paid to executed contracts paid to 100% to block generator

Obfuscated Amount (as change) distributed according to gas consumed charging contract (paid by user)

by each ICC

• (100-p)% awarded to block generator

returned to user
5. Autocontracts 100% reverts to the contract • p % paid to executed contracts no fee 100% locked for

(as change) distributed according to gas consumed a number of epochs

by each ICC

TABLE I. Summary of how gas and fees are handled in each scenario.

genesis contracts - the contracts handling DUSK- which
are present from the first block - use this strategy.

Insufficient gas

If there is insufficient gas to execute, the gas con-
sumed up is paid to the block generator.

Reward to contracts

In this scenario, contracts are rewarded directly by
their gas consumed. Since the user is the one ulti-
mately paying, it can be considered that the user is pay-
ing for a contract’s execution. This is the default be-
havior of most blockchains, with the added twist that
contracts are rewarded with gas consumed.

Scenario 2: User pays gas, contract applies fee

This scenario mirrors the previous one, but with an
additional fee that the user must add to the transaction,
specified by the contract. The user sets the gas limit,
gas price, and the fee paid.

Normal flow

As in Section , (100-p)% of the gas consumed is
transferred to the block generator, and p % is dis-
tributed to all touched contracts, weighed proportionally
to the amount of gas consumed.

The fee, on the other hand, is paid directly to the
contract by the user.

Insufficient gas

If there is insufficient gas to execute, the gas con-
sumed up is paid to the block generator, and the fee
is refunded to the user.

Scenario 3: Contract pays gas, contract applies fee

This scenario is similar to the previous one, in that
it allows a contract to specify a fee that the user must
pay. It differs however in that the contract pays for the
gas consumed during a call, as opposed to the previous
scenario where the user pays for the gas. This scenario
allows a contract set a fixed fee paid by the user.

This allows contracts to effectively subsidize a user’s
gas costs, and may be used by the contract to incen-
tivize users to use their services. Contracts using this
scenario may wish to set a fee higher than the gas costs
themselves, such that the contract earns a profit from
the transaction. The situation where this is not possible
is described below in the User pays fees lesser than gas
paid by contract section below.

Normal flow

The accounting of gas is similar to the previous sce-
nario, with the exception that the gas consumed being
paid by the contract as opposed to the user. (100-p)%



3

of the gas consumed is transferred to the block gen-
erator, and p % is distributed to all touched contracts,
weighed proportionally to the amount of gas consumed.

Insufficient gas

In the same way as the other scenarios, if there is in-
sufficient gas for the execution to complete, the user
is refunded the full amount of the fee, and the gas con-
sumed is paid to the block generator.

Setting gas price and limit

In the previous scenarios the user sets the gas price
and gas limit, and sends a transaction to the network
without any interaction with the contract. Given that,
in this scenario, the contract is paying for the gas, it
becomes necessary for the contract to be able to set the
gas price and gas limit it is willing to pay for a specific
transaction.

This imposes the need for the contract to be able to
inform the block generator of the gas price and gas
limit it is willing to pay for a given transaction, meaning
that the binary interface of the contract with the block
generator must be extended to support this functional-
ity. For any of the previous calculations to be possible,
the protocol must make data, such as low, average, and
high gas price, available to the contract. This data will
be served, like any other data, using a host function - a
function that is not part of the contract, but is made
available to it by the node.

User pays fees lesser than gas paid by contract

It is possible for a user to pay a fee that is less than
the gas consumed. In this case, the contract paying
for gas and levying a fee will be operating at a loss. Such
a situation may be exactly what the contract intends,
however, to ensure that no abuse is possible, the con-
tract must be able to specify whether it is willing to
operate at such a loss. If the contract is not willing to
operate at a loss, and the user pays a fee that is less
than the gas consumed, the transaction is treated in
the same way as if it ran out of gas.

Service provider contract

This scenario is particularly useful for so-called ser-
vice provider contracts. These are contracts designed
to provide a service to users, such as generating a
zero-knowledge proof, a subscription service, off-chain
payments, etc. In particular, a zero-knowledge proof
provider offers several advantages:

1. Reduced note proliferation: fees managed by a
contract can be accumulated within a single note,
which can be withdrawn later.

2. Instant notification of new services: wallets
are immediately notified of new services and their
fees through a simple event broadcast by registrars.

3. Support for off-chain services: the contract al-
lows notifications and incentives for off-chain ser-
vices, such as community-run proof sequencers and
provers.

Scenario 4: Contract charges a percentage of an
obfuscated amount

This scenario is similar to the second scenario, in that
the contract charges a fee to the user. The difference lies
in the fact that in this scenario the fee is a percentage
of an obfuscated amount. Transactions of DUSK can be
obfuscated, meaning that the amount being transacted is
hidden from the network. In this scenario the contract
accepts a percentage of that amount, and is assured of
its validity using a zero-knowledge proof.

Scenario 5: Autocontracts

Leveraging the economic model, defined by the pre-
viously described scenarios, we are in a position to in-
troduce a new type of contract: autocontracts. Auto-
contracts are contracts that are executed automatically
when a specific event occurs, leveraging the economic
model to pay for their own gas, using Scenario 3.
The main benefit of smart contracts is that they can be

leveraged to implement complex logic that can automat-
ically executed. This is particularly useful in the context
of decentralized finance, where functionality such as limit
orders, stop-loss orders, etc. can be implemented.
In its essence, reactive applications can now be imple-

mented on-chain, without a need for a centralized service
to monitor the state of the blockchain and react to events.

Considerations

Execution Priority: It is possible to envision auto-
contracts being executed in a few different orders. The
first could be a simple “contract ID order”, where the
contracts are executed in order of their contract ID. This
would be the simplest approach, but would not allow for
any contract to be prioritized over another. The second
approach could be a “contract fee order”, where the con-
tracts are executed in the order of which pays the most
fees. This approach would be is more complex, but it
would allow for contracts to be prioritized over others.



4

Any approach taken would need to be carefully
considered, as it would become a part of the protocol.

Moment of Execution: There are multiple possible
moments in which an autocontract could be executed.
The first possibility would be immediately after the trig-
gering event. This would be the simplest approach, but it
could lead to some significant drawbacks, such as adding
to the block gas limit, and potentially preventing the exe-
cution of other transactions. The second approach would
be to execute the autocontracts at the end of the block,
after all other transactions have been executed. This
would be a more complex approach, but might allow the
block generator to game the system by including trans-
actions that would cause the autocontract to execute in
a way that would be beneficial to the block generator.
Any approach taken would need to be carefully con-

sidered, as it would become a part of the protocol.

MODEL DISCUSSION

Dusk differs from traditional blockchain models by al-
lowing gas costs to be paid by contracts rather than users.
This approach has several advantages, including:

• It fundamentally improves the user experience.

• It solidifies long-term developer commitment
through a sustainable revenue stream.

• It departs from conventional models where network
congestion sets the price, opting instead for a cost-
effective utilization-based approach.

• It shifts the focus from speculative tokens to gen-
uine service utility, minimizing scams, and confer-
ring special advantages to financial institutions by
aligning with regulatory compliance requirements.

Adopting the economic protocol at Dusk’s base layer
rather than at the application level yields unique strate-
gic benefits. It promotes a unified approach to the UX
of wallets and clients, and incentivizes novel feature cre-
ation through a standardized base layer. In fact, the
very concept of autocontracts, introduced in Scenario 5
emerges from this setup and would not be possible at the
application level, offering a truly unique mechanism to
create a scalable market for optimized smart contracts.

Dusk’s economic model stands out from traditional ap-
proaches by allowing users to pay smart contracts directly
and specify their preferred payment method. This model
permits the transfer of gas costs to contracts rather than
users, aligning more closely with conventional scenarios
where service providers bear infrastructural costs.
Albeit other blockchains are trying to create incentives

for smart contract developers (owners), they all tend to
keep the current gas philosophy quite unchanged, that
is users pay for gas, i.e. part of gas spent by the user is
thus paid to contracts’ owner.

Configuration Contract owner incentives

Traditional

No incentive (owner’s margin is absent,
or depends on the smart-contract’s spe-
cific logic).

Gas-subsidized
contracts

Owner is subsidized by users’ gas: a per-
centile of the gas fees no longer goes to
the block generator, but to the in-
voked contracts.

Gas-and-mint
subsidized con-
tracts

Owner is subsidized by users’ gas and
also part of the block reward.

On Fee Denomination

We have chosen to write this document under the as-
sumption that fees are denominated in DUSK. Given a
specification of other denominations known to the trans-
fer contract, it is possible to extend this economic
model to support other denominations for fees. It would
then become viable for a user pay for a contract’s fee in
any denomination supported by the transfer contract,
with particular emphasis on EMT (Electronic Money To-
ken) or ART (Asset Reference Token) as established by
the MiCA regulatory framework.
Paired with the receiving contract being able to spec-

ify the denomination(s) that it is willing to accept,
this would allow for some interesting use cases, such as
frictionless digital currencies and tokenized loyalty pro-
grams.

Prior Art

Some blockchains are also trying to create incentives
for smart contract developers/owners. Fantom1 and
NEAR2 propose similar approaches to the one presented
in this document, albeit with slightly different implemen-
tations.

1 https://docs.fantom.foundation/funding/gas-monetization
2 https://docs.near.org/concepts/basics/transactions/gas


