Files
dusk_plonk
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
//! Methods to preprocess the constraint system for use in a proof

use crate::commitment_scheme::kzg10::CommitKey;
use crate::constraint_system::cs_errors::PreProcessingError;
use crate::constraint_system::StandardComposer;

use crate::fft::{EvaluationDomain, Evaluations, Polynomial};
use crate::proof_system::widget;
use dusk_bls12_381::Scalar;
use failure::Error;
use merlin::Transcript;

/// Struct that contains all of the selector and permutation polynomials in PLONK
/// These polynomials are in coefficient form
pub(crate) struct SelectorPolynomials {
    q_m: Polynomial,
    q_l: Polynomial,
    q_r: Polynomial,
    q_o: Polynomial,
    q_c: Polynomial,
    q_4: Polynomial,
    q_arith: Polynomial,
    q_range: Polynomial,
    q_logic: Polynomial,
    q_ecc: Polynomial,
    left_sigma: Polynomial,
    right_sigma: Polynomial,
    out_sigma: Polynomial,
    fourth_sigma: Polynomial,
}

impl StandardComposer {
    /// Pads the circuit to the next power of two
    /// `diff` is the difference between circuit size and next power of two.
    fn pad(&mut self, diff: usize) {
        // Add a zero variable to circuit
        let zero_scalar = Scalar::zero();
        let zero_var = self.add_input(zero_scalar);

        let zeroes_scalar = vec![zero_scalar; diff];
        let zeroes_var = vec![zero_var; diff];

        self.q_m.extend(zeroes_scalar.iter());
        self.q_l.extend(zeroes_scalar.iter());
        self.q_r.extend(zeroes_scalar.iter());
        self.q_o.extend(zeroes_scalar.iter());
        self.q_c.extend(zeroes_scalar.iter());
        self.q_4.extend(zeroes_scalar.iter());
        self.q_arith.extend(zeroes_scalar.iter());
        self.q_range.extend(zeroes_scalar.iter());
        self.q_logic.extend(zeroes_scalar.iter());
        self.q_ecc.extend(zeroes_scalar.iter());

        self.w_l.extend(zeroes_var.iter());
        self.w_r.extend(zeroes_var.iter());
        self.w_o.extend(zeroes_var.iter());
        self.w_4.extend(zeroes_var.iter());

        self.n += diff;
    }
    /// Checks that all of the wires of the composer have the same
    /// length.
    fn check_poly_same_len(&self) -> Result<(), PreProcessingError> {
        let k = self.q_m.len();

        if self.q_o.len() == k
            && self.q_l.len() == k
            && self.q_r.len() == k
            && self.q_c.len() == k
            && self.q_4.len() == k
            && self.q_arith.len() == k
            && self.q_range.len() == k
            && self.q_logic.len() == k
            && self.q_ecc.len() == k
            && self.w_l.len() == k
            && self.w_r.len() == k
            && self.w_o.len() == k
        {
            Ok(())
        } else {
            Err(PreProcessingError::MissmatchedPolyLen)
        }
    }
    /// These are the parts of preprocessing that the prover must compute
    /// Although the prover does not need the verification key, he must compute the commitments
    /// in order to seed the transcript, allowing both the prover and verifier to have the same view
    pub fn preprocess_prover(
        &mut self,
        commit_key: &CommitKey,
        transcript: &mut Transcript,
    ) -> Result<widget::ProverKey, Error> {
        let (_, selectors, domain) = self.preprocess_shared(commit_key, transcript)?;

        let domain_4n = EvaluationDomain::new(4 * domain.size())?;
        let q_m_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.q_m), domain_4n);
        let q_l_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.q_l), domain_4n);
        let q_r_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.q_r), domain_4n);
        let q_o_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.q_o), domain_4n);
        let q_c_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.q_c), domain_4n);
        let q_4_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.q_4), domain_4n);
        let q_arith_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.q_arith), domain_4n);
        let q_range_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.q_range), domain_4n);
        let q_logic_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.q_logic), domain_4n);
        let q_ecc_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.q_ecc), domain_4n);

        let left_sigma_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.left_sigma), domain_4n);
        let right_sigma_eval_4n = Evaluations::from_vec_and_domain(
            domain_4n.coset_fft(&selectors.right_sigma),
            domain_4n,
        );
        let out_sigma_eval_4n =
            Evaluations::from_vec_and_domain(domain_4n.coset_fft(&selectors.out_sigma), domain_4n);
        let fourth_sigma_eval_4n = Evaluations::from_vec_and_domain(
            domain_4n.coset_fft(&selectors.fourth_sigma),
            domain_4n,
        );
        // XXX: Remove this and compute it on the fly
        let linear_eval_4n = Evaluations::from_vec_and_domain(
            domain_4n.coset_fft(&[Scalar::zero(), Scalar::one()]),
            domain_4n,
        );

        // Prover Key for arithmetic circuits
        let arithmetic_prover_key = widget::arithmetic::ProverKey {
            q_m: (selectors.q_m, q_m_eval_4n),
            q_l: (selectors.q_l.clone(), q_l_eval_4n.clone()),
            q_r: (selectors.q_r.clone(), q_r_eval_4n.clone()),
            q_o: (selectors.q_o, q_o_eval_4n),
            q_c: (selectors.q_c.clone(), q_c_eval_4n.clone()),
            q_4: (selectors.q_4, q_4_eval_4n),
            q_arith: (selectors.q_arith, q_arith_eval_4n),
        };

        // Prover Key for range circuits
        let range_prover_key = widget::range::ProverKey {
            q_range: (selectors.q_range, q_range_eval_4n),
        };

        // Prover Key for logic circuits
        let logic_prover_key = widget::logic::ProverKey {
            q_c: (selectors.q_c.clone(), q_c_eval_4n.clone()),
            q_logic: (selectors.q_logic, q_logic_eval_4n),
        };

        // Prover Key for ecc circuits
        let ecc_prover_key = widget::ecc::ProverKey {
            q_l: (selectors.q_l, q_l_eval_4n),
            q_r: (selectors.q_r, q_r_eval_4n),
            q_c: (selectors.q_c, q_c_eval_4n),
            q_ecc: (selectors.q_ecc, q_ecc_eval_4n),
        };

        // Prover Key for permutation argument
        let permutation_prover_key = widget::permutation::ProverKey {
            left_sigma: (selectors.left_sigma, left_sigma_eval_4n),
            right_sigma: (selectors.right_sigma, right_sigma_eval_4n),
            out_sigma: (selectors.out_sigma, out_sigma_eval_4n),
            fourth_sigma: (selectors.fourth_sigma, fourth_sigma_eval_4n),
            linear_evaluations: linear_eval_4n,
        };

        let prover_key = widget::ProverKey {
            arithmetic: arithmetic_prover_key,
            logic: logic_prover_key,
            range: range_prover_key,
            permutation: permutation_prover_key,
            ecc: ecc_prover_key,
            // Compute 4n evaluations for X^n -1
            v_h_coset_4n: domain_4n.compute_vanishing_poly_over_coset(domain.size() as u64),
        };

        Ok(prover_key)
    }
    /// The verifier only requires the commitments in order to verify a proof
    /// We can therefore speed up preprocessing for the verifier by skipping the FFTs
    /// needed to compute the 4n evaluations
    pub fn preprocess_verifier(
        &mut self,
        commit_key: &CommitKey,
        transcript: &mut Transcript,
    ) -> Result<widget::VerifierKey, Error> {
        let (verifier_key, _, _) = self.preprocess_shared(commit_key, transcript)?;
        Ok(verifier_key)
    }
    // Both the prover and verifier must perform IFFTs on the selector polynomials and permutation polynomials
    // In order to commit to them and have the same transcript view
    fn preprocess_shared(
        &mut self,
        commit_key: &CommitKey,
        transcript: &mut Transcript,
    ) -> Result<(widget::VerifierKey, SelectorPolynomials, EvaluationDomain), Error> {
        let domain = EvaluationDomain::new(self.circuit_size())?;

        // Check that the length of the wires is consistent.
        self.check_poly_same_len()?;

        // 1. Pad circuit to a power of two
        self.pad(domain.size as usize - self.n);

        let q_m_poly = Polynomial::from_coefficients_slice(&domain.ifft(&self.q_m));
        let q_l_poly = Polynomial::from_coefficients_slice(&domain.ifft(&self.q_l));
        let q_r_poly = Polynomial::from_coefficients_slice(&domain.ifft(&self.q_r));
        let q_o_poly = Polynomial::from_coefficients_slice(&domain.ifft(&self.q_o));
        let q_c_poly = Polynomial::from_coefficients_slice(&domain.ifft(&self.q_c));
        let q_4_poly = Polynomial::from_coefficients_slice(&domain.ifft(&self.q_4));
        let q_arith_poly = Polynomial::from_coefficients_slice(&domain.ifft(&self.q_arith));
        let q_range_poly = Polynomial::from_coefficients_slice(&domain.ifft(&self.q_range));
        let q_logic_poly = Polynomial::from_coefficients_slice(&domain.ifft(&self.q_logic));
        let q_ecc_poly = Polynomial::from_coefficients_slice(&domain.ifft(&self.q_ecc));

        // 2. Compute the sigma polynomials
        let (left_sigma_poly, right_sigma_poly, out_sigma_poly, fourth_sigma_poly) =
            self.perm.compute_sigma_polynomials(self.n, &domain);

        let q_m_poly_commit = commit_key.commit(&q_m_poly).unwrap_or_default();
        let q_l_poly_commit = commit_key.commit(&q_l_poly).unwrap_or_default();
        let q_r_poly_commit = commit_key.commit(&q_r_poly).unwrap_or_default();
        let q_o_poly_commit = commit_key.commit(&q_o_poly).unwrap_or_default();
        let q_c_poly_commit = commit_key.commit(&q_c_poly).unwrap_or_default();
        let q_4_poly_commit = commit_key.commit(&q_4_poly).unwrap_or_default();
        let q_arith_poly_commit = commit_key.commit(&q_arith_poly).unwrap_or_default();
        let q_range_poly_commit = commit_key.commit(&q_range_poly).unwrap_or_default();
        let q_logic_poly_commit = commit_key.commit(&q_logic_poly).unwrap_or_default();
        let q_ecc_poly_commit = commit_key.commit(&q_ecc_poly).unwrap_or_default();

        let left_sigma_poly_commit = commit_key.commit(&left_sigma_poly)?;
        let right_sigma_poly_commit = commit_key.commit(&right_sigma_poly)?;
        let out_sigma_poly_commit = commit_key.commit(&out_sigma_poly)?;
        let fourth_sigma_poly_commit = commit_key.commit(&fourth_sigma_poly)?;

        // Verifier Key for arithmetic circuits
        let arithmetic_verifier_key = widget::arithmetic::VerifierKey {
            q_m: q_m_poly_commit,
            q_l: q_l_poly_commit,
            q_r: q_r_poly_commit,
            q_o: q_o_poly_commit,
            q_c: q_c_poly_commit,
            q_4: q_4_poly_commit,
            q_arith: q_arith_poly_commit,
        };
        // Verifier Key for range circuits
        let range_verifier_key = widget::range::VerifierKey {
            q_range: q_range_poly_commit,
        };
        // Verifier Key for logic circuits
        let logic_verifier_key = widget::logic::VerifierKey {
            q_c: q_c_poly_commit,
            q_logic: q_logic_poly_commit,
        };
        // Verifier Key for ecc circuits
        let ecc_verifier_key = widget::ecc::VerifierKey {
            q_l: q_l_poly_commit,
            q_r: q_r_poly_commit,
            q_ecc: q_ecc_poly_commit,
        };
        // Verifier Key for permutation argument
        let permutation_verifier_key = widget::permutation::VerifierKey {
            left_sigma: left_sigma_poly_commit,
            right_sigma: right_sigma_poly_commit,
            out_sigma: out_sigma_poly_commit,
            fourth_sigma: fourth_sigma_poly_commit,
        };

        let verifier_key = widget::VerifierKey {
            n: self.circuit_size(),
            arithmetic: arithmetic_verifier_key,
            logic: logic_verifier_key,
            range: range_verifier_key,
            ecc: ecc_verifier_key,
            permutation: permutation_verifier_key,
        };

        let selectors = SelectorPolynomials {
            q_m: q_m_poly,
            q_l: q_l_poly,
            q_r: q_r_poly,
            q_o: q_o_poly,
            q_c: q_c_poly,
            q_4: q_4_poly,
            q_arith: q_arith_poly,
            q_range: q_range_poly,
            q_logic: q_logic_poly,
            q_ecc: q_ecc_poly,
            left_sigma: left_sigma_poly,
            right_sigma: right_sigma_poly,
            out_sigma: out_sigma_poly,
            fourth_sigma: fourth_sigma_poly,
        };

        // Add the circuit description to the transcript
        verifier_key.seed_transcript(transcript);

        Ok((verifier_key, selectors, domain))
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::constraint_system::helper::*;
    #[test]
    /// Tests that the circuit gets padded to the correct length
    /// XXX: We can do this test without dummy_gadget method
    fn test_pad() {
        let mut composer: StandardComposer = StandardComposer::new();
        dummy_gadget(100, &mut composer);

        // Pad the circuit to next power of two
        let next_pow_2 = composer.n.next_power_of_two() as u64;
        composer.pad(next_pow_2 as usize - composer.n);

        let size = composer.n;
        assert!(size.is_power_of_two());
        assert!(composer.q_m.len() == size);
        assert!(composer.q_l.len() == size);
        assert!(composer.q_o.len() == size);
        assert!(composer.q_r.len() == size);
        assert!(composer.q_c.len() == size);
        assert!(composer.q_arith.len() == size);
        assert!(composer.q_range.len() == size);
        assert!(composer.q_logic.len() == size);
        assert!(composer.w_l.len() == size);
        assert!(composer.w_r.len() == size);
        assert!(composer.w_o.len() == size);
    }
}