1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
#![allow(dead_code)] #![allow(non_snake_case)] //! Implementation of the Ristretto Protocol over the //! Sonnycurve. //! //! Notes extracted from: https://ristretto.group/ristretto.html. //! Go there for the full lecture or check the paper here: //! https://tools.ietf.org/pdf/draft-hdevalence-cfrg-ristretto-00.pdf //! //! The code wa originaly created by Isis Agora Lovecruft and //! Henry de Valence [here](https://github.com/dalek-cryptography/curve25519-dalek/blob/master/src/ristretto.rs) //! //! # What's Ristretto? //! Ristretto is a construction of a prime-order group using a non-prime-order Edwards curve. //! The Decaf paper suggests using a non-prime-order curve E\mathcal EE to implement a prime-order //! group by constructing a quotient group. Ristretto uses the same idea, but with different formulas, //! in order to allow the use of cofactor 8 curves such as Curve25519. //! //! Internally, a Ristretto point is represented by an Edwards point. //! Two Edwards points `P, Q` may represent the same Ristretto point, in the same way that //! different projective (X,Y,Z) coordinates may represent the same Edwards point. //! //! Group operations on Ristretto points are carried out with no overhead by performing the //! operations on the representative Edwards points. //! //! Reference: https://tools.ietf.org/html/draft-hdevalence-cfrg-ristretto-00 use crate::constants; use crate::edwards::{double_and_add, EdwardsPoint}; use crate::field::FieldElement; use crate::scalar::Scalar; use crate::traits::ops::*; use crate::traits::{Identity, ValidityCheck}; use core::ops::{Add, Sub, Index, Mul, Neg}; use std::fmt::Debug; use rand::{CryptoRng, Rng}; use subtle::{Choice, ConditionallyNegatable, ConditionallySelectable, ConstantTimeEq}; /// Ristretto Point expressed in wire format. /// Since the Ristretto bytes encoding is canonical, /// two points are equal if their encodin form is equal. #[derive(Debug, Clone, Copy)] pub struct CompressedRistretto(pub [u8; 32]); impl Index<usize> for CompressedRistretto { type Output = u8; fn index(&self, _index: usize) -> &u8 { &(self.0[_index]) } } impl ConstantTimeEq for CompressedRistretto { fn ct_eq(&self, other: &Self) -> Choice { self.as_bytes().ct_eq(&other.as_bytes()) } } impl PartialEq for CompressedRistretto { fn eq(&self, other: &CompressedRistretto) -> bool { self.ct_eq(other).unwrap_u8() == 1u8 } } impl Eq for CompressedRistretto {} impl Identity for CompressedRistretto { /// Returns the Identity point on `CompressedRistretto` /// format. fn identity() -> CompressedRistretto { CompressedRistretto([0u8; 32]) } } impl CompressedRistretto { /// Get the bytes of the `CompressedRistretto` point. pub fn as_bytes(&self) -> [u8; 32] { self.0 } pub fn copy_from_slice(bytes: &[u8]) -> CompressedRistretto { let mut inp = [0u8; 32]; inp.copy_from_slice(bytes); CompressedRistretto(inp) } #[allow(non_snake_case)] /// Attempt to decompress a `CompressedRistretto` point. /// This proces is done following the formulas derived from the /// isogenies that suit for our curve selection. /// /// # Returns /// - If the decompression/decoding succeeds -> `Some(RistrettoPoint)`. /// - If the decompression/decoding fails -> `None`. pub fn decompress(&self) -> Option<RistrettoPoint> { // Step 1: Check that the byte-string is a valid FieldElement. // As Ristretto paper says: "If the implementation's field element // encoding function produces canonical outputs, one way to check // that s_bytes is a canonical encoding (in step 1) is to decode // s_bytes into sss, then re-encode sss into s_bytes_check, and ensure // that s_bytes == s_bytes_check. let s: FieldElement = FieldElement::from_bytes(&self.as_bytes()); let s_check = s.to_bytes(); let s_correct_enc = s_check.ct_eq(&self.as_bytes()); let s_is_positive = s.is_positive(); // If the byte-encoding was incorrect or the representation is // a negative `FieldElement` (according to the definition of // positive found on Decaf paper), return `None`. if s_is_positive.unwrap_u8() == 0u8 || s_correct_enc.unwrap_u8() == 0u8 { return None; }; // Step 2: Attempt to decompress the CompressedRistretto. let one = FieldElement::one(); // u1 = 1 + as² with a = -1. let u1 = one - s.square(); // u2 = 1 - as² with a = -1. let u2 = one + s.square(); let u2_sq = u2.square(); // v = a*d*u1² - u2² let v = -(constants::EDWARDS_D * u1.square()) - u2_sq; // I = 1/sqrt(v*u2²), returns `None` if the sqrt does not exist. let (ok, I) = (v * u2_sq).inv_sqrt(); if ok.unwrap_u8() == 0 { return None; }; // Compute the Extended Point Coordinates Y & T let Dx = I * u2; let Dy = I * Dx * v; // Compute ABS(2*s*Dx) and negate if it is negative. let mut x = (s + s) * Dx; let x_is_pos = x.is_positive(); x.conditional_negate(!x_is_pos); // Compute Y and T coordinates. let y = u1 * Dy; let t = x * y; if t.is_positive().unwrap_u8() == 0u8 || y == FieldElement::zero() { return None; }; Some(RistrettoPoint(EdwardsPoint { X: x, Y: y, Z: one, T: t, })) } } #[derive(Clone, Copy)] pub struct RistrettoPoint(pub EdwardsPoint); impl Debug for RistrettoPoint { fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result { write!(f, "{:?}", &self.0) } } impl ConstantTimeEq for RistrettoPoint { /// As specified on the Ristretto protocol docs: /// https://ristretto.group/formulas/equality.html /// and we are on the twisted case, we compare /// `X1*Y2 == Y1*X2 | X1*X2 == Y1*Y2`. fn ct_eq(&self, other: &RistrettoPoint) -> Choice { let a = (self.0.X * other.0.Y).ct_eq(&(self.0.Y * other.0.X)); let b = (self.0.X * other.0.X).ct_eq(&(self.0.Y * other.0.Y)); a | b } } impl PartialEq for RistrettoPoint { fn eq(&self, other: &RistrettoPoint) -> bool { self.ct_eq(&other).unwrap_u8() == 1u8 } } impl Eq for RistrettoPoint {} impl Identity for RistrettoPoint { /// Gives back the Identity point for the Extended Edwards Coordinates /// which is endoded as a `RistrettoPoint` with coordinates: /// `(X, Y, Z, T)` = `(0, 1, 1, 0)`. fn identity() -> RistrettoPoint { RistrettoPoint(EdwardsPoint::identity()) } } impl Default for RistrettoPoint { /// Gives back the Identity point for the Extended Edwards Coordinates /// which is endoded as a `RistrettoPoint` with coordinates: /// `(X, Y, Z, T)` = `(0, 1, 1, 0)`. fn default() -> RistrettoPoint { RistrettoPoint::identity() } } //TODO: Review RistrettoPoint original implementation correctness: #83. impl ValidityCheck for RistrettoPoint { /// A valid `RistrettoPoint` should have exactly /// order `L` (Scalar Field Order) and also /// verify the curve equation. /// /// This trait is mostly implemented for debugging purposes. /// /// # Returns /// - `Choice(1) if the point has order L (not 2L, 4L or 8L) & /// satisfies the curve equation. /// - `Choice(0) if the point does not satisfy one of the conditions /// mentioned avobe. fn is_valid(&self) -> Choice { // Verify that the point has order `L` (Sub group order). let has_order_l = (self.0 * constants::L).ct_eq(&EdwardsPoint::identity()); has_order_l & self.0.is_valid() } } impl<'a> Neg for &'a RistrettoPoint { type Output = RistrettoPoint; /// Negates a `RistrettoPoint` giving it's negated representation /// as a result. /// /// Since the negative of a point is (-X:Y:Z:-T), it /// gives as a result: `(-X:Y:Z:-T)`. fn neg(self) -> RistrettoPoint { RistrettoPoint(-self.0) } } impl Neg for RistrettoPoint { type Output = RistrettoPoint; /// Negates a `RistrettoPoint` giving it's negated representation /// as a result. /// /// Since the negative of a point is (-X:Y:Z:-T), it /// gives as a result: `(-X:Y:Z:-T)`. fn neg(self) -> RistrettoPoint { RistrettoPoint(-&self.0) } } impl<'a, 'b> Add<&'a RistrettoPoint> for &'b RistrettoPoint { type Output = RistrettoPoint; /// Performs the addition of two RistrettoPoints following the /// Twisted Edwards Extended Coordinates formulae. /// /// This implementation is specific for curves with `a = -1` as /// the isomorphic twist is for Doppio. /// /// [Source: 2008 Hisil–Wong–Carter–Dawson], /// (http://eprint.iacr.org/2008/522), Section 3.1. fn add(self, other: &'a RistrettoPoint) -> RistrettoPoint { RistrettoPoint(&self.0 + &other.0) } } impl Add<RistrettoPoint> for RistrettoPoint { type Output = RistrettoPoint; /// Performs the addition of two RistrettoPoints following the /// Twisted Edwards Extended Coordinates formulae. /// /// This implementation is specific for curves with `a = -1` as /// the isomorphic twist is for Doppio. /// /// [Source: 2008 Hisil–Wong–Carter–Dawson], /// (http://eprint.iacr.org/2008/522), Section 3.1. fn add(self, other: RistrettoPoint) -> RistrettoPoint { &self + &other } } impl<'a, 'b> Sub<&'a RistrettoPoint> for &'b RistrettoPoint { type Output = RistrettoPoint; /// Performs the subtraction of two RistrettoPoints following the /// Twisted Edwards Extended Coordinates formulae. /// /// Note that Subtraction is basically the addition of the first /// point by the second negated. /// /// This implementation is specific for curves with `a = -1` as /// the isomorphic twist is for Doppio. /// /// [Source: 2008 Hisil–Wong–Carter–Dawson], /// (http://eprint.iacr.org/2008/522), Section 3.1. fn sub(self, other: &'a RistrettoPoint) -> RistrettoPoint { self + &-other } } impl Sub<RistrettoPoint> for RistrettoPoint { type Output = RistrettoPoint; /// Performs the subtraction of two RistrettoPoints following the /// Twisted Edwards Extended Coordinates formulae. /// /// Note that Subtraction is basically the addition of the first /// point by the second negated. /// /// This implementation is specific for curves with `a = -1` as /// the isomorphic twist is for Doppio. /// /// [Source: 2008 Hisil–Wong–Carter–Dawson], /// (http://eprint.iacr.org/2008/522), Section 3.1. fn sub(self, other: RistrettoPoint) -> RistrettoPoint { &self - &other } } impl<'a> Double for &'a RistrettoPoint { type Output = RistrettoPoint; /// Performs the point doubling operation /// ie. `2*P` over the Twisted Edwards Extended /// Coordinates. /// /// This implementation is specific for curves with `a = -1` as /// the isomorphic twist is. /// Source: 2008 Hisil–Wong–Carter–Dawson, /// http://eprint.iacr.org/2008/522, Section 3.1. /// Cost: 4M+ 4S+ 1D fn double(self) -> RistrettoPoint { RistrettoPoint(self.0.double()) } } impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoPoint { type Output = RistrettoPoint; /// Scalar multiplication: compute `self * Scalar`. /// This implementation uses the algorithm: /// `add_and_doubling` which is the standard one for /// this operations and also adds less constraints on /// R1CS. /// /// Hankerson, Darrel; Vanstone, Scott; Menezes, Alfred (2004). /// Guide to Elliptic Curve Cryptography. /// Springer Professional Computing. New York: Springer-Verlag. fn mul(self, scalar: &'b Scalar) -> RistrettoPoint { double_and_add(self, scalar) } } impl<'a, 'b> Mul<&'b RistrettoPoint> for &'a Scalar { type Output = RistrettoPoint; /// Scalar multiplication: compute `self * Scalar`. /// This implementation uses the algorithm: /// `add_and_doubling` which is the standard one for /// this operations and also adds less constraints on /// R1CS. /// /// Hankerson, Darrel; Vanstone, Scott; Menezes, Alfred (2004). /// Guide to Elliptic Curve Cryptography. /// Springer Professional Computing. New York: Springer-Verlag. fn mul(self, point: &'b RistrettoPoint) -> RistrettoPoint { double_and_add(point, &self) } } impl Mul<Scalar> for RistrettoPoint { type Output = RistrettoPoint; /// Scalar multiplication: compute `self * Scalar`. /// This implementation uses the algorithm: /// `add_and_doubling` which is the standard one for /// this operations and also adds less constraints on /// R1CS. /// /// Hankerson, Darrel; Vanstone, Scott; Menezes, Alfred (2004). /// Guide to Elliptic Curve Cryptography. /// Springer Professional Computing. New York: Springer-Verlag. fn mul(self, scalar: Scalar) -> RistrettoPoint { &self * &scalar } } impl Mul<RistrettoPoint> for Scalar { type Output = RistrettoPoint; /// Scalar multiplication: compute `self * Scalar`. /// This implementation uses the algorithm: /// `add_and_doubling` which is the standard one for /// this operations and also adds less constraints on /// R1CS. /// /// Hankerson, Darrel; Vanstone, Scott; Menezes, Alfred (2004). /// Guide to Elliptic Curve Cryptography. /// Springer Professional Computing. New York: Springer-Verlag. fn mul(self, point: RistrettoPoint) -> RistrettoPoint { &self * &point } } impl RistrettoPoint { /// Encode a Ristretto point represented by the point `(X:Y:Z:T)` /// in extended coordinates. #[allow(non_snake_case)] pub fn compress(&self) -> CompressedRistretto { let u1 = (self.0.Z + self.0.Y) * (self.0.Z - self.0.Y); let u2 = self.0.X * self.0.Y; let (_, I) = (u1 * u2.square()).inv_sqrt(); let D1 = u1 * I; let D2 = u2 * I; let Zinv = D1 * D2 * self.0.T; let mut xy; let D; if (self.0.T * Zinv).is_positive().unwrap_u8() == 0u8 { xy = ( constants::SQRT_MINUS_ONE * self.0.Y, constants::SQRT_MINUS_ONE * self.0.X, ); D = D1 * constants::INV_SQRT_A_MINUS_D; } else { xy = (self.0.X, self.0.Y); D = D2; }; xy.1.conditional_negate(!(xy.0 * Zinv).is_positive()); // We are on the Twisted case, so a = -1. // Then s = ABS((Z-Y) * D) let mut s = (self.0.Z - xy.1) * D; s.conditional_negate(!s.is_positive()); CompressedRistretto(s.to_bytes()) } /// Computes the Ristretto Elligator map. /// This gets a `RistrettoPoint` from a given /// `FieldElement´. pub fn elligator_ristretto_flavor(r_0: &FieldElement) -> RistrettoPoint { let d = constants::EDWARDS_D; let one = FieldElement::one(); let mut c = -one; // 1 - d^2 let one_minus_d_sq = one - d.square(); // r = i*r0^2 let r = constants::SQRT_MINUS_ONE * r_0.square(); // Ns = a(r+1)*(a+d)*(a-d) let N_s = (r + one) * one_minus_d_sq; // D = (d*r -a)*(a*r -d) let D = (c - (d * r)) * (r + d); // s = sqrt(Ns/D) let (Ns_D_is_sq, mut s) = N_s.sqrt_ratio_i(&D); //s' = -ABS(s*r0) let mut s_prim = &s * r_0; s_prim.conditional_negate(s_prim.is_positive()); s.conditional_assign(&s_prim, !Ns_D_is_sq); c.conditional_assign(&r, !Ns_D_is_sq); // Nt = c(r-1)*(d-1)^2 - D let N_t = ((c * (r - one)) * (d - one).square()) - D; let s_square = s.square(); // Get the `CompletePoint` coordinates. let W0 = (s + s) * D; let W1 = N_t * constants::SQRT_AD_MINUS_ONE; let W2 = one - s_square; let W3 = one + s_square; // Get the `EdwardsPoint` that comes from the // `CompletePoint` obtained by the original // algorithm. RistrettoPoint(EdwardsPoint { X: W0 * W3, Y: W2 * W1, Z: W1 * W3, T: W0 * W2, }) } /// Debugging function used to get the 4coset where a point /// lives. pub(self) fn coset4(&self) -> [EdwardsPoint; 4] { self.0.coset4() } /// Construct a `RistrettoPoint` from 64 bytes of data. /// /// If the input bytes are uniformly distributed, the resulting /// point will be uniformly distributed over the group, and its /// discrete log with respect to other points should be unknown. /// /// # Implementation /// /// This function splits the input array into two 32-byte halves, /// takes the low 255 bits of each half mod p, applies the /// Ristretto-flavored Elligator map to each, and adds the results. /// /// This function is taken from the Ristretto255 implementation found /// in [curve25519-dalek](https://github.com/dalek-cryptography/curve25519-dalek/blob/cf03d39f0fc3e1c625b9f1e9be0473758b324526/src/ristretto.rs#L713) pub fn from_uniform_bytes(bytes: &[u8; 64]) -> RistrettoPoint { let mut r_1_bytes = [0u8; 32]; r_1_bytes.copy_from_slice(&bytes[0..32]); let r_1 = FieldElement::from_bytes(&r_1_bytes); let R_1 = RistrettoPoint::elligator_ristretto_flavor(&r_1); let mut r_2_bytes = [0u8; 32]; r_2_bytes.copy_from_slice(&bytes[32..64]); let r_2 = FieldElement::from_bytes(&r_2_bytes); let R_2 = RistrettoPoint::elligator_ristretto_flavor(&r_2); // Applying Elligator twice and adding the results ensures a // uniform distribution. R_1 + R_2 } /// Generate a random `RistrettoPoint` from a 64-byte array generated /// with user-provided rng. /// /// The provided `rng` has to implement: `Rng` + `CryptoRng`. /// /// This function uses the elligator hash map twice, once for [0..31] & /// another for [32..64] giving a uniformly distributed random value. /// /// This implementation follows the idea pointed on the /// random point generation used in [curve25519-dalek](https://github.com/dalek-cryptography/curve25519-dalek). pub fn new_random_point<T: Rng + CryptoRng>(rand: &mut T) -> RistrettoPoint { let mut bytes = [0u8; 64]; rand.try_fill(&mut bytes).unwrap(); RistrettoPoint::from_uniform_bytes(&bytes) } } #[cfg(test)] mod tests { use super::*; #[cfg(feature = "rand")] use rand::rngs::OsRng; #[test] fn basepoint_compr_decompr() { let compress = RistrettoPoint(constants::BASEPOINT).compress(); let decompress = compress.decompress().unwrap(); assert!(decompress == RistrettoPoint(constants::BASEPOINT)); } #[test] fn valid_encoding_test_vectors() { // The following are the byte encodings of small multiples // [0]B, [1]B, ..., [15]B // of the basepoint, represented as hex strings. let encodings_of_small_multiples = [ // This is the identity point "0000000000000000000000000000000000000000000000000000000000000000", // This is the basepoint "0200000000000000000000000000000000000000000000000000000000000000", // These are small multiples of the basepoint "abe4ea98eaaeda5a9c63879cb3c4d9b4a01ed31ac383acefd7ed49861e1a8002", "1064fe35b16525f90f1d2f7d3dc448ba31a118f136c53eed88c2e951f1832907", "a826cf66461dea21e51187dddd8753299b726a7d4217cb75758aefbf5a2d4f01", "4d2e0705a9b47d122f98bd74808d386cf1691bc5407af703dd0c4808038b7f07", "f3a3592fde5fa05a881b80b4e732b37c32c7f684a5be33cdb8b7bdaf53db6f04", "51626c7960da63010efc5e064e62962f158f59928914fc108257ec2653745e01", "d5f8144c1b04954291785be578633a79131752e82afb990bd4a25b41cbd49001", "1372ed81add54633970746cd4b38ceb8a3e538b916288ac3d7c0dfbd54a42b06", "a83d7a262a80926724a0beb75a5f26e9a622205e6a64730e14ce64c4b2acf704", "a6b2712a6e586ab552f7bcf438168304b8b8a3f3b2852a06ae183e6303406503", "7876266b939b889c1da827a76da5c220eb1ff934472d35de60c9e4c3528fcc06", "11a0f75ab351572b572c38bf073b076aa964cdff70d53ad7588174dae2729306", "64f2fb80b45fbf73793e9e8e509f98848ecdb452c98c83c55c5c31fb233d9907", "1de5afbe9fd279f1651306d8ac0f68f0cb2689609ccfe8db1636f9481a33e205", ]; // Test the encodings of small multiples let B = constants::RISTRETTO_BASEPOINT; let mut P = RistrettoPoint::identity(); for i in 0..16 { assert_eq!( hex::encode(P.compress().as_bytes()), encodings_of_small_multiples[i], ); P = P + B; } } #[test] fn decompress_id() { use crate::edwards::CompressedEdwardsY; let compressed_id = CompressedRistretto::identity(); let id = compressed_id.decompress().unwrap(); let mut identity_in_coset = false; for P in &id.0.coset4() { if P.compress() == CompressedEdwardsY::identity() { identity_in_coset = true; } } assert!(identity_in_coset); } #[test] fn four_torsion_diff() { use crate::edwards::{mul_by_pow_2, CompressedEdwardsY}; let bp_compr_decompr = constants::RISTRETTO_BASEPOINT .compress() .decompress() .unwrap() .0; // Check that bp_compr_decompr differs from the // original RistrettoBasepoint by a point of order 4. let point_order_4 = &constants::RISTRETTO_BASEPOINT.0 - &bp_compr_decompr; let verif = mul_by_pow_2(&point_order_4, 2); assert_eq!(verif.compress(), CompressedEdwardsY::identity()); } #[cfg(feature = "rand")] #[test] fn four_torsion_diff_random() { let mut rng = OsRng::new().unwrap(); let B = &constants::RISTRETTO_BASEPOINT; let P = B * &Scalar::random(&mut rng); let P_coset = P.coset4(); for i in 0..4 { assert_eq!(P, RistrettoPoint(P_coset[i])); } // Check that P_compr_decompr differs from the // original P by a point of order 4 let P_compr_decompr = P.compress().decompress().unwrap(); let point_order_4 = &P + &-P_compr_decompr; assert!(mul_by_pow_2(&point_order_4, &2) == RistrettoPoint::identity()) } #[test] fn four_coset_eq_basepoint() { let basepoint = constants::RISTRETTO_BASEPOINT; let basep_coset = basepoint.coset4(); for coset_point in &basep_coset { assert!(RistrettoPoint(*coset_point) == basepoint); } } #[test] fn validity_check() { // RISTRETTO_BASEPOINT should be valid. assert!(constants::RISTRETTO_BASEPOINT.is_valid().unwrap_u8() == 1u8); // The identity and multiples of the basepoint should also be valid. let mut P = RistrettoPoint::identity(); let basep = constants::RISTRETTO_BASEPOINT; for _i in 0..16 { assert!(P.is_valid().unwrap_u8() == 1u8); P = P + basep; } // This point has order `8L` is a valid `EdwardsPoint` // but it's not a valid `RistrettoPoint`. let y_coord_bytes_8L = FieldElement::from_bytes(&[ 177, 118, 250, 81, 30, 181, 58, 122, 224, 214, 112, 52, 50, 60, 95, 199, 213, 167, 143, 108, 154, 218, 242, 27, 175, 111, 152, 152, 213, 211, 157, 15, ]); let point_8L = EdwardsPoint::new_from_y_coord(&y_coord_bytes_8L, Choice::from(0u8)).unwrap(); assert!(point_8L.is_valid().unwrap_u8() == 1u8); assert!(RistrettoPoint(point_8L).is_valid().unwrap_u8() == 0u8); } #[cfg(feature = "rand")] #[test] fn random_point_validity() { let mut rng = OsRng::new().unwrap(); for i in 0..100 { let P = RistrettoPoint::new_random_point(&mut rng); // Check that the resulting `EdwardsPoint` relies on the curve. assert!(P.0.is_valid().unwrap_u8() == 1u8); P.compress().decompress(); } } #[test] fn elligator_vs_ristretto_sage() { // This test uses the Sage script `ristretto.sage` located in the // `curve25519-dalek` repository in order to get test vectors of the // ristretto_elligator algorithm. let expected_point = RistrettoPoint(EdwardsPoint { X: FieldElement([ 520984263488427, 2866053035698784, 356812350072736, 1177086814167286, 17585355348321, ]), Y: FieldElement([ 2224110940152212, 767723869121786, 2519083920383090, 3478258567033985, 6072297619626, ]), Z: FieldElement([1, 0, 0, 0, 0]), T: FieldElement([ 3761248848988017, 3474827148739807, 3137090891116602, 1521420215868592, 8052069914602, ]), }); assert!(expected_point.is_valid().unwrap_u8() == 1u8); let raw_bytes = hex::decode("2e2d7c6f887c81c1593f32e2fa31a7b65d4fbbf38f8ab3045ead22fc45743219") .unwrap(); let mut bytes = [0u8; 32]; bytes.copy_from_slice(&raw_bytes); let point_from_ellig = RistrettoPoint::elligator_ristretto_flavor(&FieldElement::from_bytes(&bytes)); assert!(point_from_ellig.0.is_valid().unwrap_u8() == 1u8); assert!(point_from_ellig == expected_point); assert!(point_from_ellig.compress() == expected_point.compress()) } }