1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
extern crate bulletproofs;
extern crate core;
extern crate curve25519_dalek;
extern crate merlin;
extern crate rand;
extern crate subtle;
use bulletproofs::r1cs::{ConstraintSystem, LinearCombination, Variable};
use curve25519_dalek::scalar::Scalar;
pub const MIMC_ROUNDS: usize = 90;
pub fn proof_gadget<CS: ConstraintSystem>(
cs: &mut CS,
d: LinearCombination,
k: LinearCombination,
y_inv: LinearCombination,
q: LinearCombination,
z_img: LinearCombination,
seed: LinearCombination,
constants: &Vec<Scalar>,
toggle: Vec<Variable>,
items: Vec<LinearCombination>,
) {
assert_eq!(MIMC_ROUNDS, constants.len());
let m = mimc_gadget(cs, k, Scalar::zero().into(), &constants);
let x = mimc_gadget(cs, d.clone(), m.clone(), &constants);
one_of_many_gadget(cs, x.clone(), toggle, items);
let y = mimc_gadget(cs, seed.clone(), x, &constants);
let z = mimc_gadget(cs, seed, m, &constants);
cs.constrain(z_img - z);
score_gadget(cs, d, y, y_inv, q);
}
fn mimc_gadget<CS: ConstraintSystem>(
cs: &mut CS,
left: LinearCombination,
right: LinearCombination,
constants: &Vec<Scalar>,
) -> LinearCombination {
assert_eq!(MIMC_ROUNDS, constants.len());
let mut x = left.clone();
let key = right.clone();
for i in 0..MIMC_ROUNDS {
let a = x + key.clone() + constants[i];
let (_, _, a_2) = cs.multiply(a.clone(), a.clone());
let (_, _, a_3) = cs.multiply(a_2.clone().into(), a.clone().into());
let (_, _, a_4) = cs.multiply(a_2.clone().into(), a_2.clone().into());
let (_, _, a_7) = cs.multiply(a_4.into(), a_3.into());
x = a_7.into();
}
x + key
}
fn score_gadget<CS: ConstraintSystem>(
cs: &mut CS,
d: LinearCombination,
y: LinearCombination,
y_inv: LinearCombination,
q: LinearCombination,
) {
let one = Scalar::one();
let (_, _, one_var) = cs.multiply(y, y_inv.clone());
cs.constrain(one_var - one);
let (_, _, q_var) = cs.multiply(d, y_inv);
cs.constrain(q - q_var);
}
fn one_of_many_gadget<CS: ConstraintSystem>(
cs: &mut CS,
x: LinearCombination,
toggle: Vec<Variable>,
items: Vec<LinearCombination>,
) {
let toggle_len = toggle.len();
for i in toggle.iter() {
boolean_gadget(cs, i.clone().into());
}
let mut toggle_sum: Vec<LinearCombination> = Vec::with_capacity(toggle_len);
toggle_sum.push(toggle[0].clone().into());
for i in 1..toggle_len {
let prev_toggle_sum = toggle_sum[i - 1].clone();
let curr_toggle = toggle[i].clone();
toggle_sum.push(prev_toggle_sum + (curr_toggle.clone()));
}
for i in 1..toggle_len {
let prev_toggle_sum = toggle_sum[i - 1].clone();
let curr_toggle = toggle[i].clone();
let curr_toggle_sum = toggle_sum[i].clone();
toggle_sum[i] = toggle_sum[i - 1].clone() + (toggle[i].clone());
cs.constrain(prev_toggle_sum + (curr_toggle) - (curr_toggle_sum));
}
let one: Scalar = Scalar::one();
let last_item = toggle_sum[toggle_len - 1].clone();
cs.constrain(last_item - one);
for i in 0..toggle_len {
let (_, _, left) = cs.multiply(items[i].clone(), toggle[i].clone().into());
let (_, _, right) = cs.multiply(toggle[i].clone().into(), x.clone());
cs.constrain(left - right);
}
}
fn boolean_gadget<CS: ConstraintSystem>(cs: &mut CS, a1: LinearCombination) {
let a = a1.clone();
let one: LinearCombination = Scalar::one().into();
let (_, _, c_var) = cs.multiply(a, one - a1);
cs.constrain(c_var.into());
}