Files
aho_corasick
ansi_term
atty
backtrace
backtrace_sys
bitflags
blindbid
block_buffer
block_padding
bulletproofs
byte_tools
byteorder
cfg_if
chrono
clap
clear_on_drop
curve25519_dalek
digest
dusk_blindbidproof
dusk_tlv
dusk_uds
env_logger
failure
failure_derive
fake_simd
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
humantime
keccak
lazy_static
libc
log
memchr
merlin
num_cpus
num_integer
num_traits
opaque_debug
packed_simd
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quick_error
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
regex
regex_syntax
rustc_demangle
serde
serde_derive
sha2
sha3
slab
strsim
subtle
syn
synstructure
termcolor
textwrap
thread_local
time
typenum
unicode_width
unicode_xid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2018 Isis Lovecruft, Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Implementation of the interleaved window method, also known as Straus' method.

#![allow(non_snake_case)]

use core::borrow::Borrow;

use edwards::EdwardsPoint;
use scalar::Scalar;
use traits::MultiscalarMul;
use traits::VartimeMultiscalarMul;

#[allow(unused_imports)]
use prelude::*;

/// Perform multiscalar multiplication by the interleaved window
/// method, also known as Straus' method (since it was apparently
/// [first published][solution] by Straus in 1964, as a solution to [a
/// problem][problem] posted in the American Mathematical Monthly in
/// 1963).
///
/// It is easy enough to reinvent, and has been repeatedly.  The basic
/// idea is that when computing
/// \\[
/// Q = s_1 P_1 + \cdots + s_n P_n
/// \\]
/// by means of additions and doublings, the doublings can be shared
/// across the \\( P_i \\\).
///
/// We implement two versions, a constant-time algorithm using fixed
/// windows and a variable-time algorithm using sliding windows.  They
/// are slight variations on the same idea, and are described in more
/// detail in the respective implementations.
///
/// [solution]: https://www.jstor.org/stable/2310929
/// [problem]: https://www.jstor.org/stable/2312273
pub struct Straus {}

impl MultiscalarMul for Straus {
    type Point = EdwardsPoint;

    /// Constant-time Straus using a fixed window of size \\(4\\).
    ///
    /// Our goal is to compute
    /// \\[
    /// Q = s_1 P_1 + \cdots + s_n P_n.
    /// \\]
    ///
    /// For each point \\( P_i \\), precompute a lookup table of
    /// \\[
    /// P_i, 2P_i, 3P_i, 4P_i, 5P_i, 6P_i, 7P_i, 8P_i.
    /// \\]
    ///
    /// For each scalar \\( s_i \\), compute its radix-\\(2^4\\)
    /// signed digits \\( s_{i,j} \\), i.e.,
    /// \\[
    ///    s_i = s_{i,0} + s_{i,1} 16^1 + ... + s_{i,63} 16^{63},
    /// \\]
    /// with \\( -8 \leq s_{i,j} < 8 \\).  Since \\( 0 \leq |s_{i,j}|
    /// \leq 8 \\), we can retrieve \\( s_{i,j} P_i \\) from the
    /// lookup table with a conditional negation: using signed
    /// digits halves the required table size.
    ///
    /// Then as in the single-base fixed window case, we have
    /// \\[
    /// \begin{aligned}
    /// s_i P_i &= P_i (s_{i,0} +     s_{i,1} 16^1 + \cdots +     s_{i,63} 16^{63})   \\\\
    /// s_i P_i &= P_i s_{i,0} + P_i s_{i,1} 16^1 + \cdots + P_i s_{i,63} 16^{63}     \\\\
    /// s_i P_i &= P_i s_{i,0} + 16(P_i s_{i,1} + 16( \cdots +16P_i s_{i,63})\cdots )
    /// \end{aligned}
    /// \\]
    /// so each \\( s_i P_i \\) can be computed by alternately adding
    /// a precomputed multiple \\( P_i s_{i,j} \\) of \\( P_i \\) and
    /// repeatedly doubling.
    ///
    /// Now consider the two-dimensional sum
    /// \\[
    /// \begin{aligned}
    /// s\_1 P\_1 &=& P\_1 s\_{1,0} &+& 16 (P\_1 s\_{1,1} &+& 16 ( \cdots &+& 16 P\_1 s\_{1,63}&) \cdots ) \\\\
    ///     +     & &      +        & &      +            & &             & &     +            &           \\\\
    /// s\_2 P\_2 &=& P\_2 s\_{2,0} &+& 16 (P\_2 s\_{2,1} &+& 16 ( \cdots &+& 16 P\_2 s\_{2,63}&) \cdots ) \\\\
    ///     +     & &      +        & &      +            & &             & &     +            &           \\\\
    /// \vdots    & &  \vdots       & &   \vdots          & &             & &  \vdots          &           \\\\
    ///     +     & &      +        & &      +            & &             & &     +            &           \\\\
    /// s\_n P\_n &=& P\_n s\_{n,0} &+& 16 (P\_n s\_{n,1} &+& 16 ( \cdots &+& 16 P\_n s\_{n,63}&) \cdots )
    /// \end{aligned}
    /// \\]
    /// The sum of the left-hand column is the result \\( Q \\); by
    /// computing the two-dimensional sum on the right column-wise,
    /// top-to-bottom, then right-to-left, we need to multiply by \\(
    /// 16\\) only once per column, sharing the doublings across all
    /// of the input points.
    fn multiscalar_mul<I, J>(scalars: I, points: J) -> EdwardsPoint
    where
        I: IntoIterator,
        I::Item: Borrow<Scalar>,
        J: IntoIterator,
        J::Item: Borrow<EdwardsPoint>,
    {
        use clear_on_drop::ClearOnDrop;

        use backend::serial::curve_models::ProjectiveNielsPoint;
        use window::LookupTable;
        use traits::Identity;

        let lookup_tables: Vec<_> = points
            .into_iter()
            .map(|point| LookupTable::<ProjectiveNielsPoint>::from(point.borrow()))
            .collect();

        // This puts the scalar digits into a heap-allocated Vec.
        // To ensure that these are erased, pass ownership of the Vec into a
        // ClearOnDrop wrapper.
        let scalar_digits_vec: Vec<_> = scalars
            .into_iter()
            .map(|s| s.borrow().to_radix_16())
            .collect();
        let scalar_digits = ClearOnDrop::new(scalar_digits_vec);

        let mut Q = EdwardsPoint::identity();
        for j in (0..64).rev() {
            Q = Q.mul_by_pow_2(4);
            let it = scalar_digits.iter().zip(lookup_tables.iter());
            for (s_i, lookup_table_i) in it {
                // R_i = s_{i,j} * P_i
                let R_i = lookup_table_i.select(s_i[j]);
                // Q = Q + R_i
                Q = (&Q + &R_i).to_extended();
            }
        }
        Q
    }
}

impl VartimeMultiscalarMul for Straus {
    type Point = EdwardsPoint;

    /// Variable-time Straus using a non-adjacent form of width \\(5\\).
    ///
    /// This is completely similar to the constant-time code, but we
    /// use a non-adjacent form for the scalar, and do not do table
    /// lookups in constant time.
    ///
    /// The non-adjacent form has signed, odd digits.  Using only odd
    /// digits halves the table size (since we only need odd
    /// multiples), or gives fewer additions for the same table size.
    fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<EdwardsPoint>
    where
        I: IntoIterator,
        I::Item: Borrow<Scalar>,
        J: IntoIterator<Item = Option<EdwardsPoint>>,
    {
        use backend::serial::curve_models::{CompletedPoint, ProjectiveNielsPoint, ProjectivePoint};
        use window::NafLookupTable5;
        use traits::Identity;

        let nafs: Vec<_> = scalars
            .into_iter()
            .map(|c| c.borrow().non_adjacent_form(5))
            .collect();

        let lookup_tables = match points
            .into_iter()
            .map(|P_opt| P_opt.map(|P| NafLookupTable5::<ProjectiveNielsPoint>::from(&P)))
            .collect::<Option<Vec<_>>>()
        {
            Some(x) => x,
            None => return None,
        };

        let mut r = ProjectivePoint::identity();

        for i in (0..256).rev() {
            let mut t: CompletedPoint = r.double();

            for (naf, lookup_table) in nafs.iter().zip(lookup_tables.iter()) {
                if naf[i] > 0 {
                    t = &t.to_extended() + &lookup_table.select(naf[i] as usize);
                } else if naf[i] < 0 {
                    t = &t.to_extended() - &lookup_table.select(-naf[i] as usize);
                }
            }

            r = t.to_projective();
        }

        Some(r.to_extended())
    }
}