use super::{
fft_errors::{FFTError, FFTErrors},
Evaluations,
};
use core::fmt;
use dusk_bls12_381::{Scalar, GENERATOR, ROOT_OF_UNITY, TWO_ADACITY};
use failure::Error;
use rayon::iter::{IndexedParallelIterator, IntoParallelRefMutIterator, ParallelIterator};
use std::ops::MulAssign;
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct EvaluationDomain {
pub size: u64,
pub log_size_of_group: u32,
pub size_as_field_element: Scalar,
pub size_inv: Scalar,
pub group_gen: Scalar,
pub group_gen_inv: Scalar,
pub generator_inv: Scalar,
}
impl fmt::Debug for EvaluationDomain {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Multiplicative subgroup of size {}", self.size)
}
}
impl EvaluationDomain {
pub fn new(num_coeffs: usize) -> Result<Self, Error> {
let size = num_coeffs.next_power_of_two() as u64;
let log_size_of_group = size.trailing_zeros();
if log_size_of_group >= TWO_ADACITY {
return Err(FFTError(
FFTErrors::InvalidEvalDomainSize {
log_size_of_group,
adacity: TWO_ADACITY,
}
.into(),
)
.into());
}
let mut group_gen = ROOT_OF_UNITY;
for _ in log_size_of_group..TWO_ADACITY {
group_gen = group_gen.square();
}
let size_as_field_element = Scalar::from(size);
let size_inv = size_as_field_element.invert().unwrap();
Ok(EvaluationDomain {
size,
log_size_of_group,
size_as_field_element,
size_inv,
group_gen,
group_gen_inv: group_gen.invert().unwrap(),
generator_inv: GENERATOR.invert().unwrap(),
})
}
pub fn compute_size_of_domain(num_coeffs: usize) -> Option<usize> {
let size = num_coeffs.next_power_of_two();
if size.trailing_zeros() < TWO_ADACITY {
Some(size)
} else {
None
}
}
pub fn size(&self) -> usize {
self.size as usize
}
pub fn fft(&self, coeffs: &[Scalar]) -> Vec<Scalar> {
let mut coeffs = coeffs.to_vec();
self.fft_in_place(&mut coeffs);
coeffs
}
pub fn fft_in_place(&self, coeffs: &mut Vec<Scalar>) {
coeffs.resize(self.size(), Scalar::zero());
best_fft(coeffs, self.group_gen, self.log_size_of_group)
}
pub fn ifft(&self, evals: &[Scalar]) -> Vec<Scalar> {
let mut evals = evals.to_vec();
self.ifft_in_place(&mut evals);
evals
}
#[inline]
pub fn ifft_in_place(&self, evals: &mut Vec<Scalar>) {
evals.resize(self.size(), Scalar::zero());
best_fft(evals, self.group_gen_inv, self.log_size_of_group);
evals.par_iter_mut().for_each(|val| *val *= &self.size_inv);
}
fn distribute_powers(coeffs: &mut [Scalar], g: Scalar) {
let mut pow = Scalar::one();
coeffs.iter_mut().for_each(|c| {
*c *= &pow;
pow *= &g
})
}
pub fn coset_fft(&self, coeffs: &[Scalar]) -> Vec<Scalar> {
let mut coeffs = coeffs.to_vec();
self.coset_fft_in_place(&mut coeffs);
coeffs
}
pub fn coset_fft_in_place(&self, coeffs: &mut Vec<Scalar>) {
Self::distribute_powers(coeffs, GENERATOR);
self.fft_in_place(coeffs);
}
pub fn coset_ifft(&self, evals: &[Scalar]) -> Vec<Scalar> {
let mut evals = evals.to_vec();
self.coset_ifft_in_place(&mut evals);
evals
}
pub fn coset_ifft_in_place(&self, evals: &mut Vec<Scalar>) {
self.ifft_in_place(evals);
Self::distribute_powers(evals, self.generator_inv);
}
#[allow(clippy::needless_range_loop)]
pub fn evaluate_all_lagrange_coefficients(&self, tau: Scalar) -> Vec<Scalar> {
let size = self.size as usize;
let t_size = tau.pow(&[self.size, 0, 0, 0]);
let one = Scalar::one();
if t_size == Scalar::one() {
let mut u = vec![Scalar::zero(); size];
let mut omega_i = one;
for i in 0..size {
if omega_i == tau {
u[i] = one;
break;
}
omega_i *= &self.group_gen;
}
u
} else {
use crate::util::batch_inversion;
let mut l = (t_size - one) * self.size_inv;
let mut r = one;
let mut u = vec![Scalar::zero(); size];
let mut ls = vec![Scalar::zero(); size];
for i in 0..size {
u[i] = tau - r;
ls[i] = l;
l *= &self.group_gen;
r *= &self.group_gen;
}
batch_inversion(u.as_mut_slice());
u.par_iter_mut().zip(ls).for_each(|(tau_minus_r, l)| {
*tau_minus_r = l * *tau_minus_r;
});
u
}
}
pub fn evaluate_vanishing_polynomial(&self, tau: &Scalar) -> Scalar {
tau.pow(&[self.size, 0, 0, 0]) - Scalar::one()
}
pub fn compute_vanishing_poly_over_coset(
&self,
poly_degree: u64,
) -> Evaluations {
assert!((self.size() as u64) > poly_degree);
let coset_gen = GENERATOR.pow(&[poly_degree, 0, 0, 0]);
let v_h: Vec<_> = (0..self.size())
.map(|i| {
(coset_gen * self.group_gen.pow(&[poly_degree * i as u64, 0, 0, 0])) - Scalar::one()
})
.collect();
Evaluations::from_vec_and_domain(v_h, *self)
}
pub fn elements(&self) -> Elements {
Elements {
cur_elem: Scalar::one(),
cur_pow: 0,
domain: *self,
}
}
pub fn divide_by_vanishing_poly_on_coset_in_place(&self, evals: &mut [Scalar]) {
let i = self
.evaluate_vanishing_polynomial(&GENERATOR)
.invert()
.unwrap();
evals.par_iter_mut().for_each(|eval| *eval *= &i);
}
pub fn reindex_by_subdomain(&self, other: Self, index: usize) -> usize {
assert!(self.size() >= other.size());
let period = self.size() / other.size();
if index < other.size() {
index * period
} else {
let i = index - other.size();
let x = period - 1;
i + (i / x) + 1
}
}
#[must_use]
pub fn mul_polynomials_in_evaluation_domain(
&self,
self_evals: &[Scalar],
other_evals: &[Scalar],
) -> Vec<Scalar> {
assert_eq!(self_evals.len(), other_evals.len());
let mut result = self_evals.to_vec();
result
.par_iter_mut()
.zip(other_evals)
.for_each(|(a, b)| *a *= b);
result
}
}
#[cfg(feature = "parallel")]
fn best_fft(a: &mut [Scalar], omega: Scalar, log_n: u32) {
fn log2_floor(num: usize) -> u32 {
assert!(num > 0);
let mut pow = 0;
while (1 << (pow + 1)) <= num {
pow += 1;
}
pow
}
let num_cpus = rayon::current_num_threads();
let log_cpus = log2_floor(num_cpus);
if log_n <= log_cpus {
serial_fft(a, omega, log_n);
} else {
parallel_fft(a, omega, log_n, log_cpus);
}
}
#[cfg(not(feature = "parallel"))]
fn best_fft(a: &mut [Scalar], omega: Scalar, log_n: u32) {
serial_fft(a, omega, log_n)
}
#[inline]
fn bitreverse(mut n: u32, l: u32) -> u32 {
let mut r = 0;
for _ in 0..l {
r = (r << 1) | (n & 1);
n >>= 1;
}
r
}
pub(crate) fn serial_fft(a: &mut [Scalar], omega: Scalar, log_n: u32) {
let n = a.len() as u32;
assert_eq!(n, 1 << log_n);
for k in 0..n {
let rk = bitreverse(k, log_n);
if k < rk {
a.swap(rk as usize, k as usize);
}
}
let mut m = 1;
for _ in 0..log_n {
let w_m = omega.pow(&[(n / (2 * m)) as u64, 0, 0, 0]);
let mut k = 0;
while k < n {
let mut w = Scalar::one();
for j in 0..m {
let mut t = a[(k + j + m) as usize];
t *= &w;
let mut tmp = a[(k + j) as usize];
tmp -= &t;
a[(k + j + m) as usize] = tmp;
a[(k + j) as usize] += &t;
w.mul_assign(&w_m);
}
k += 2 * m;
}
m *= 2;
}
}
#[cfg(feature = "parallel")]
pub(crate) fn parallel_fft(a: &mut [Scalar], omega: Scalar, log_n: u32, log_cpus: u32) {
assert!(log_n >= log_cpus);
let num_cpus = 1 << log_cpus;
let log_new_n = log_n - log_cpus;
let mut tmp = vec![vec![F::zero(); 1 << log_new_n]; num_cpus];
let new_omega = omega.pow(&[num_cpus as u64]);
tmp.par_iter_mut().enumerate().for_each(|(j, tmp)| {
let omega_j = omega.pow(&[j as u64]);
let omega_step = omega.pow(&[(j as u64) << log_new_n]);
let mut elt = F::one();
for i in 0..(1 << log_new_n) {
for s in 0..num_cpus {
let idx = (i + (s << log_new_n)) % (1 << log_n);
let mut t = a[idx];
t *= &elt;
tmp[i] += &t;
elt *= &omega_step;
}
elt *= &omega_j;
}
serial_fft(tmp, new_omega, log_new_n);
});
let mask = (1 << log_cpus) - 1;
a.iter_mut()
.enumerate()
.for_each(|(i, a)| *a = tmp[i & mask][i >> log_cpus]);
}
#[derive(Debug)]
pub struct Elements {
cur_elem: Scalar,
cur_pow: u64,
domain: EvaluationDomain,
}
impl Iterator for Elements {
type Item = Scalar;
fn next(&mut self) -> Option<Scalar> {
if self.cur_pow == self.domain.size {
None
} else {
let cur_elem = self.cur_elem;
self.cur_elem *= &self.domain.group_gen;
self.cur_pow += 1;
Some(cur_elem)
}
}
}
#[cfg(test)]
mod tests {
use super::EvaluationDomain;
#[test]
fn size_of_elements() {
for coeffs in 1..10 {
let size = 1 << coeffs;
let domain = EvaluationDomain::new(size).unwrap();
let domain_size = domain.size();
assert_eq!(domain_size, domain.elements().count());
}
}
#[test]
fn elements_contents() {
for coeffs in 1..10 {
let size = 1 << coeffs;
let domain = EvaluationDomain::new(size).unwrap();
for (i, element) in domain.elements().enumerate() {
assert_eq!(element, domain.group_gen.pow(&[i as u64, 0, 0, 0]));
}
}
}
}