Files
dusk_plonk
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#![allow(clippy::too_many_arguments)]
use crate::fft::{EvaluationDomain, Evaluations, Polynomial};
use crate::permutation::constants::{K1, K2, K3};
use dusk_bls12_381::Scalar;

#[derive(Debug, Eq, PartialEq)]
pub struct ProverKey {
    pub left_sigma: (Polynomial, Evaluations),
    pub right_sigma: (Polynomial, Evaluations),
    pub out_sigma: (Polynomial, Evaluations),
    pub fourth_sigma: (Polynomial, Evaluations),
    pub linear_evaluations: Evaluations, // Evaluations of f(x) = X [XXX: Remove this and benchmark if it makes a considerable difference -- These are just the domain elements]
}

impl ProverKey {
    pub(crate) fn compute_quotient_i(
        &self,
        index: usize,
        w_l_i: &Scalar,
        w_r_i: &Scalar,
        w_o_i: &Scalar,
        w_4_i: &Scalar,
        z_i: &Scalar,
        z_i_next: &Scalar,
        alpha: &Scalar,
        l1_alpha_sq: &Scalar,
        beta: &Scalar,
        gamma: &Scalar,
    ) -> Scalar {
        let a = self.compute_quotient_identity_range_check_i(
            index, w_l_i, w_r_i, w_o_i, w_4_i, z_i, alpha, beta, gamma,
        );
        let b = self.compute_quotient_copy_range_check_i(
            index, w_l_i, w_r_i, w_o_i, w_4_i, z_i_next, alpha, beta, gamma,
        );
        let c = self.compute_quotient_term_check_one_i(z_i, l1_alpha_sq);
        a + b + c
    }
    // (a(x) + beta * X + gamma) (b(X) + beta * k1 * X + gamma) (c(X) + beta * k2 * X + gamma)(d(X) + beta * k3 * X + gamma)z(X) * alpha
    fn compute_quotient_identity_range_check_i(
        &self,
        index: usize,
        w_l_i: &Scalar,
        w_r_i: &Scalar,
        w_o_i: &Scalar,
        w_4_i: &Scalar,
        z_i: &Scalar,
        alpha: &Scalar,
        beta: &Scalar,
        gamma: &Scalar,
    ) -> Scalar {
        let x = self.linear_evaluations[index];

        (w_l_i + (beta * x) + gamma)
            * (w_r_i + (beta * K1 * x) + gamma)
            * (w_o_i + (beta * K2 * x) + gamma)
            * (w_4_i + (beta * K3 * x) + gamma)
            * z_i
            * alpha
    }
    // (a(x) + beta* Sigma1(X) + gamma) (b(X) + beta * Sigma2(X) + gamma) (c(X) + beta * Sigma3(X) + gamma)(d(X) + beta * Sigma4(X) + gamma) Z(X.omega) * alpha
    fn compute_quotient_copy_range_check_i(
        &self,
        index: usize,
        w_l_i: &Scalar,
        w_r_i: &Scalar,
        w_o_i: &Scalar,
        w_4_i: &Scalar,
        z_i_next: &Scalar,
        alpha: &Scalar,
        beta: &Scalar,
        gamma: &Scalar,
    ) -> Scalar {
        let left_sigma_eval = self.left_sigma.1[index];
        let right_sigma_eval = self.right_sigma.1[index];
        let out_sigma_eval = self.out_sigma.1[index];
        let fourth_sigma_eval = self.fourth_sigma.1[index];

        let product = (w_l_i + (beta * left_sigma_eval) + gamma)
            * (w_r_i + (beta * right_sigma_eval) + gamma)
            * (w_o_i + (beta * out_sigma_eval) + gamma)
            * (w_4_i + (beta * fourth_sigma_eval) + gamma)
            * z_i_next
            * alpha;

        -product
    }
    // L_1(X)[Z(X) - 1]
    fn compute_quotient_term_check_one_i(&self, z_i: &Scalar, l1_alpha_sq: &Scalar) -> Scalar {
        (z_i - Scalar::one()) * l1_alpha_sq
    }

    pub(crate) fn compute_linearisation(
        &self,
        z_challenge: &Scalar,
        (alpha, beta, gamma): (&Scalar, &Scalar, &Scalar),
        (a_eval, b_eval, c_eval, d_eval): (&Scalar, &Scalar, &Scalar, &Scalar),
        (sigma_1_eval, sigma_2_eval, sigma_3_eval): (&Scalar, &Scalar, &Scalar),
        z_eval: &Scalar,
        z_poly: &Polynomial,
    ) -> Polynomial {
        let a = self.compute_lineariser_identity_range_check(
            (&a_eval, &b_eval, &c_eval, &d_eval),
            z_challenge,
            (alpha, beta, gamma),
            z_poly,
        );
        let b = self.compute_lineariser_copy_range_check(
            (&a_eval, &b_eval, &c_eval),
            z_eval,
            &sigma_1_eval,
            &sigma_2_eval,
            &sigma_3_eval,
            (alpha, beta, gamma),
            &self.fourth_sigma.0,
        );

        let domain = EvaluationDomain::new(z_poly.degree()).unwrap();
        let c = self.compute_lineariser_check_is_one(&domain, z_challenge, &alpha.square(), z_poly);
        &(&a + &b) + &c
    }
    // (a_eval + beta * z_challenge + gamma)(b_eval + beta * K1 * z_challenge + gamma)(c_eval + beta * K2 * z_challenge + gamma) * alpha z(X)
    fn compute_lineariser_identity_range_check(
        &self,
        (a_eval, b_eval, c_eval, d_eval): (&Scalar, &Scalar, &Scalar, &Scalar),
        z_challenge: &Scalar,
        (alpha, beta, gamma): (&Scalar, &Scalar, &Scalar),
        z_poly: &Polynomial,
    ) -> Polynomial {
        let beta_z = beta * z_challenge;

        // a_eval + beta * z_challenge + gamma
        let mut a_0 = a_eval + beta_z;
        a_0 += gamma;

        // b_eval + beta * K1 * z_challenge + gamma
        let beta_z_k1 = K1 * beta_z;
        let mut a_1 = b_eval + beta_z_k1;
        a_1 += gamma;

        // c_eval + beta * K2 * z_challenge + gamma
        let beta_z_k2 = K2 * beta_z;
        let mut a_2 = c_eval + beta_z_k2;
        a_2 += gamma;

        // d_eval + beta * K3 * z_challenge + gamma
        let beta_z_k3 = K3 * beta_z;
        let mut a_3 = d_eval + beta_z_k3;
        a_3 += gamma;

        let mut a = a_0 * a_1;
        a *= a_2;
        a *= a_3;
        a *= alpha; // (a_eval + beta * z_challenge + gamma)(b_eval + beta * K1 * z_challenge + gamma)(c_eval + beta * K2 * z_challenge + gamma)(d_eval + beta * K3 * z_challenge + gamma) * alpha
        z_poly * &a // (a_eval + beta * z_challenge + gamma)(b_eval + beta * K1 * z_challenge + gamma)(c_eval + beta * K2 * z_challenge + gamma) * alpha z(X)
    }
    // -(a_eval + beta * sigma_1 + gamma)(b_eval + beta * sigma_2 + gamma) (c_eval + beta * sigma_3 + gamma) * beta *z_eval * alpha^2 * Sigma_4(X)
    fn compute_lineariser_copy_range_check(
        &self,
        (a_eval, b_eval, c_eval): (&Scalar, &Scalar, &Scalar),
        z_eval: &Scalar,
        sigma_1_eval: &Scalar,
        sigma_2_eval: &Scalar,
        sigma_3_eval: &Scalar,
        (alpha, beta, gamma): (&Scalar, &Scalar, &Scalar),
        fourth_sigma_poly: &Polynomial,
    ) -> Polynomial {
        // a_eval + beta * sigma_1 + gamma
        let beta_sigma_1 = beta * sigma_1_eval;
        let mut a_0 = a_eval + beta_sigma_1;
        a_0 += gamma;

        // b_eval + beta * sigma_2 + gamma
        let beta_sigma_2 = beta * sigma_2_eval;
        let mut a_1 = b_eval + beta_sigma_2;
        a_1 += gamma;

        // c_eval + beta * sigma_3 + gamma
        let beta_sigma_3 = beta * sigma_3_eval;
        let mut a_2 = c_eval + beta_sigma_3;
        a_2 += gamma;

        let beta_z_eval = beta * z_eval;

        let mut a = a_0 * a_1 * a_2;
        a *= beta_z_eval;
        a *= alpha; // (a_eval + beta * sigma_1 + gamma)(b_eval + beta * sigma_2 + gamma)(c_eval + beta * sigma_3 + gamma) * beta * z_eval * alpha

        fourth_sigma_poly * &-a // -(a_eval + beta * sigma_1 + gamma)(b_eval + beta * sigma_2 + gamma) (c_eval + beta * sigma_3 + gamma) * beta * z_eval * alpha^2 * Sigma_4(X)
    }

    fn compute_lineariser_check_is_one(
        &self,
        domain: &EvaluationDomain,
        z_challenge: &Scalar,
        alpha_sq: &Scalar,
        z_coeffs: &Polynomial,
    ) -> Polynomial {
        // Evaluate l_1(z)
        let l_1_z = domain.evaluate_all_lagrange_coefficients(*z_challenge)[0];

        z_coeffs * &(l_1_z * alpha_sq)
    }
}