1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
#![allow(clippy::too_many_arguments)] use super::{delta, delta_xor_and}; use crate::fft::{Evaluations, Polynomial}; use dusk_bls12_381::Scalar; #[derive(Debug, Eq, PartialEq)] pub struct ProverKey { pub q_c: (Polynomial, Evaluations), pub q_logic: (Polynomial, Evaluations), } impl ProverKey { pub(crate) fn compute_quotient_i( &self, index: usize, logic_separation_challenge: &Scalar, w_l_i: &Scalar, w_l_i_next: &Scalar, w_r_i: &Scalar, w_r_i_next: &Scalar, w_o_i: &Scalar, w_4_i: &Scalar, w_4_i_next: &Scalar, ) -> Scalar { let four = Scalar::from(4); let q_logic_i = &self.q_logic.1[index]; let q_c_i = &self.q_c.1[index]; let kappa = logic_separation_challenge.square(); let kappa_sq = kappa.square(); let kappa_cu = kappa_sq * kappa; let kappa_qu = kappa_cu * kappa; let a = w_l_i_next - four * w_l_i; let c_0 = delta(a); let b = w_r_i_next - four * w_r_i; let c_1 = delta(b) * kappa; let d = w_4_i_next - four * w_4_i; let c_2 = delta(d) * kappa_sq; let w = w_o_i; let c_3 = (w - a * b) * kappa_cu; let c_4 = delta_xor_and(&a, &b, w, &d, &q_c_i) * kappa_qu; q_logic_i * (c_3 + c_0 + c_1 + c_2 + c_4) * logic_separation_challenge } pub(crate) fn compute_linearisation( &self, logic_separation_challenge: &Scalar, a_eval: &Scalar, a_next_eval: &Scalar, b_eval: &Scalar, b_next_eval: &Scalar, c_eval: &Scalar, d_eval: &Scalar, d_next_eval: &Scalar, q_c_eval: &Scalar, ) -> Polynomial { let four = Scalar::from(4); let q_logic_poly = &self.q_logic.0; let kappa = logic_separation_challenge.square(); let kappa_sq = kappa.square(); let kappa_cu = kappa_sq * kappa; let kappa_qu = kappa_cu * kappa; let a = a_next_eval - four * a_eval; let c_0 = delta(a); let b = b_next_eval - four * b_eval; let c_1 = delta(b) * kappa; let d = d_next_eval - four * d_eval; let c_2 = delta(d) * kappa_sq; let w = c_eval; let c_3 = (w - a * b) * kappa_cu; let c_4 = delta_xor_and(&a, &b, w, &d, &q_c_eval) * kappa_qu; let t = (c_0 + c_1 + c_2 + c_3 + c_4) * logic_separation_challenge; q_logic_poly * &t } }