use crate::fft::{EvaluationDomain, Polynomial};
use crate::proof_system::widget::ProverKey;
use dusk_bls12_381::Scalar;
use failure::Error;
use rayon::prelude::*;
pub(crate) fn compute(
domain: &EvaluationDomain,
prover_key: &ProverKey,
z_poly: &Polynomial,
(w_l_poly, w_r_poly, w_o_poly, w_4_poly): (&Polynomial, &Polynomial, &Polynomial, &Polynomial),
public_inputs_poly: &Polynomial,
(alpha, beta, gamma, range_challenge, logic_challenge, ecc_challenge): &(
Scalar,
Scalar,
Scalar,
Scalar,
Scalar,
Scalar,
),
) -> Result<Polynomial, Error> {
let domain_4n = EvaluationDomain::new(4 * domain.size())?;
let mut z_eval_4n = domain_4n.coset_fft(&z_poly);
z_eval_4n.push(z_eval_4n[0]);
z_eval_4n.push(z_eval_4n[1]);
z_eval_4n.push(z_eval_4n[2]);
z_eval_4n.push(z_eval_4n[3]);
let mut wl_eval_4n = domain_4n.coset_fft(&w_l_poly);
wl_eval_4n.push(wl_eval_4n[0]);
wl_eval_4n.push(wl_eval_4n[1]);
wl_eval_4n.push(wl_eval_4n[2]);
wl_eval_4n.push(wl_eval_4n[3]);
let mut wr_eval_4n = domain_4n.coset_fft(&w_r_poly);
wr_eval_4n.push(wr_eval_4n[0]);
wr_eval_4n.push(wr_eval_4n[1]);
wr_eval_4n.push(wr_eval_4n[2]);
wr_eval_4n.push(wr_eval_4n[3]);
let wo_eval_4n = domain_4n.coset_fft(&w_o_poly);
let mut w4_eval_4n = domain_4n.coset_fft(&w_4_poly);
w4_eval_4n.push(w4_eval_4n[0]);
w4_eval_4n.push(w4_eval_4n[1]);
w4_eval_4n.push(w4_eval_4n[2]);
w4_eval_4n.push(w4_eval_4n[3]);
let t_1 = compute_circuit_satisfiability_equation(
&domain,
(range_challenge, logic_challenge, ecc_challenge),
prover_key,
(&wl_eval_4n, &wr_eval_4n, &wo_eval_4n, &w4_eval_4n),
public_inputs_poly,
);
let t_2 = compute_permutation_checks(
domain,
prover_key,
(&wl_eval_4n, &wr_eval_4n, &wo_eval_4n, &w4_eval_4n),
&z_eval_4n,
(alpha, beta, gamma),
);
let quotient: Vec<_> = (0..domain_4n.size())
.into_par_iter()
.map(|i| {
let numerator = t_1[i] + t_2[i];
let denominator = prover_key.v_h_coset_4n()[i];
numerator * denominator.invert().unwrap()
})
.collect();
Ok(Polynomial::from_coefficients_vec(
domain_4n.coset_ifft("ient),
))
}
fn compute_circuit_satisfiability_equation(
domain: &EvaluationDomain,
(range_challenge, logic_challenge, ecc_challenge): (&Scalar, &Scalar, &Scalar),
prover_key: &ProverKey,
(wl_eval_4n, wr_eval_4n, wo_eval_4n, w4_eval_4n): (&[Scalar], &[Scalar], &[Scalar], &[Scalar]),
pi_poly: &Polynomial,
) -> Vec<Scalar> {
let domain_4n = EvaluationDomain::new(4 * domain.size()).unwrap();
let pi_eval_4n = domain_4n.coset_fft(pi_poly);
let t: Vec<_> = (0..domain_4n.size())
.into_par_iter()
.map(|i| {
let wl = &wl_eval_4n[i];
let wr = &wr_eval_4n[i];
let wo = &wo_eval_4n[i];
let w4 = &w4_eval_4n[i];
let wl_next = &wl_eval_4n[i + 4];
let wr_next = &wr_eval_4n[i + 4];
let w4_next = &w4_eval_4n[i + 4];
let pi = &pi_eval_4n[i];
let a = prover_key.arithmetic.compute_quotient_i(i, wl, wr, wo, w4);
let b =
prover_key
.range
.compute_quotient_i(i, range_challenge, wl, wr, wo, w4, w4_next);
let c = prover_key.logic.compute_quotient_i(
i,
logic_challenge,
&wl,
&wl_next,
&wr,
&wr_next,
&wo,
&w4,
&w4_next,
);
let d = prover_key.ecc.compute_quotient_i(
i,
ecc_challenge,
&wl,
&wl_next,
&wr,
&wr_next,
&wo,
&w4,
&w4_next,
);
(a + pi) + b + c + d
})
.collect();
t
}
fn compute_permutation_checks(
domain: &EvaluationDomain,
prover_key: &ProverKey,
(wl_eval_4n, wr_eval_4n, wo_eval_4n, w4_eval_4n): (&[Scalar], &[Scalar], &[Scalar], &[Scalar]),
z_eval_4n: &[Scalar],
(alpha, beta, gamma): (&Scalar, &Scalar, &Scalar),
) -> Vec<Scalar> {
let domain_4n = EvaluationDomain::new(4 * domain.size()).unwrap();
let l1_poly_alpha = compute_first_lagrange_poly_scaled(domain, alpha.square());
let l1_alpha_sq_evals = domain_4n.coset_fft(&l1_poly_alpha.coeffs);
let t: Vec<_> = (0..domain_4n.size())
.into_par_iter()
.map(|i| {
prover_key.permutation.compute_quotient_i(
i,
&wl_eval_4n[i],
&wr_eval_4n[i],
&wo_eval_4n[i],
&w4_eval_4n[i],
&z_eval_4n[i],
&z_eval_4n[i + 4],
&alpha,
&l1_alpha_sq_evals[i],
&beta,
&gamma,
)
})
.collect();
t
}
fn compute_first_lagrange_poly_scaled(domain: &EvaluationDomain, scale: Scalar) -> Polynomial {
let mut x_evals = vec![Scalar::zero(); domain.size()];
x_evals[0] = scale;
domain.ifft_in_place(&mut x_evals);
Polynomial::from_coefficients_vec(x_evals)
}