1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
use super::{delta, delta_xor_and}; use crate::commitment_scheme::kzg10::Commitment; use crate::proof_system::linearisation_poly::ProofEvaluations; use dusk_bls12_381::{G1Affine, Scalar}; #[derive(Debug)] pub struct VerifierKey { pub q_c: Commitment, pub q_logic: Commitment, } impl VerifierKey { pub(crate) fn compute_linearisation_commitment( &self, logic_separation_challenge: &Scalar, scalars: &mut Vec<Scalar>, points: &mut Vec<G1Affine>, evaluations: &ProofEvaluations, ) { let four = Scalar::from(4); let kappa = logic_separation_challenge.square(); let kappa_sq = kappa.square(); let kappa_cu = kappa_sq * kappa; let kappa_qu = kappa_cu * kappa; let a = evaluations.a_next_eval - four * evaluations.a_eval; let c_0 = delta(a); let b = evaluations.b_next_eval - four * evaluations.b_eval; let c_1 = delta(b) * kappa; let d = evaluations.d_next_eval - four * evaluations.d_eval; let c_2 = delta(d) * kappa_sq; let w = evaluations.c_eval; let c_3 = (w - a * b) * kappa_cu; let c_4 = delta_xor_and(&a, &b, &w, &d, &evaluations.q_c_eval) * kappa_qu; scalars.push((c_0 + c_1 + c_2 + c_3 + c_4) * logic_separation_challenge); points.push(self.q_logic.0); } }